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Functionally graded Ti(C, N)-based cermets were prepared via vacuum liquid sintering and subsequent
double-glow plasma carburization. The microstructure was characterized using scanning electron micro-
scope (SEM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). It was found that a sur-

face zone enriched in titanium, molybdenum, tungsten, carbon and nitrogen, deficient in nickel was

Keywords:

Functionally graded cermet
Double-glow plasma carburization
Microstructure

Forming mechanism

introduced by double-glow plasma carburization. The high carbon activity in the surface region drove
titanium, molybdenum and tungsten elements inside the substrate to diffuse outwards, consequently
the nickel-rich binder was forced to transport inwards. The formation of the binder-deficient layer was
controlled by the diffusion of the alloy elements and the growing rate did not follow the parabolic law.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Ti(C, N)-based cermets are used as cutting tools for the high
hardness, good thermal stability, excellent creep and wear resis-
tance [1,2], but the appreciably low strength restricts their use.
This issue could be commendably solved by introducing graded
structure into the materials [3].

Over the past years, many approaches were suggested to pre-
pare functionally graded hardmetals and cermets, such as coating
and heat-treatment in nitrogen [4,5]. Coating could greatly en-
hance the surface wear resistance by depositing a layer of hard
material on the tough bulk [6]. Since the coating process is usually
carried out at high temperature, cracks are formed ineluctably due
to different thermal expansion coefficients between coatings and
substrate [7]. During machining, the cracks propagated through
the entire coating and resulted in catastrophic failure. These cracks
could be avoided by heat-treatment in nitrogen [8]. However, due
to tiny solubility of nitrogen in the nickel binder, the gradient layer
was limited, although a long heat-treatment time was applied [3].

It was found that the formation of the graded structure resulted
from the differences of the affinity between nitrogen and different
alloy elements during nitriding [9]. As there is also a remarkable
difference of the affinity between carbon and these metallic ele-
ments, a gradient is also anticipated by carburization. However
there is no report on the issue till now.

* Corresponding author. Tel.: +86 25 84236039; fax: +86 25 52112626.
E-mail address: yzheng_only@263.net (Z. Yong).

0263-4368/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijrmhm.2008.10.013

The double-glow plasma surface alloying technology (known as
Xu-Tec process or DG technology) was developed in 1980, and had
been successfully used in surface modification of metal materials
[10]. The Xu-Tec process is a unique and hybrid technique using
a double-glow discharge phenomenon inside a vacuum chamber,
which has evolved from both plasma nitriding and sputtering tech-
niques [11]. In general, any metallic or metalloid element could be
alloyed into the surface of the conductive substrates. In the present
study, functionally graded Ti(C, N)-based cermets were prepared
via vacuum liquid sintering and subsequent double-glow plasma
carburization. Then the microstructure and composition distribu-
tion of the carburized cermets were investigated. In addition, the
forming mechanism of the graded layer was also discussed.

2. Experimental procedure

The schematic presentation of double-glow plasma surface
alloying equipment is shown in Fig. 1. There are three electrodes
in the vacuum chamber of the double-glow plasma surface alloying
apparatus: one anode and two negatively charged members [12].
The negatively charged members include cathode (workpiece)
and the source electrode.

In the present experiment, the source electrode was made up of
carbon. The cathode and source electrode were surrounded by
glow discharge, one glow discharge heated the substrate to be al-
loyed and the second glow struck the source electrode [11], which
was known as double-glow discharge. During carburization, the
cermets were heated to a designed temperature by plasma bom-
bardment and carbon was sputtered by the second glow from
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Fig. 1. Sketch map of equipment for double-glow plasma carburization [11].

Table 1
Chemical composition and mean particle size of initial powders.

Powders

TiC (after milled for 24 h) 0.51
TiN (after milled for 24 h) 0.52

Chemical composition (wt.%)

0<1.21
0<1.10

Particle size (pum)

wC 0.85 Cree < 0.025, 0 < 0.21
Ni 1.70 Crree < 0.03, 0 < 0.22
Mo 2.60 Crree < 0.0012, 0 < 0.10

the source electrode, then flied towards and subsequently diffused
into the substrate surface to form a gradient layer.

The characteristics of the initial powders are summarized in Ta-
ble 1. The compositions of the two kinds of cermets with different
nickel content considered in the present study are TiC-10 wt.% TiN-
21 wt.% Ni-16 wt.% Mo-8.4 wt.% WC and TiC-10 wt.% TiN-32 wt.%
Ni-16 wt.% Mo-8.4 wt.% WC, respectively.

The powder mixtures were ball milled in alcohol for 24 h, the
mass ratio of ball to material was 7:1 and the rotational speed
was 260rpm. The bar specimens with a dimension of
40.0 mm x 8.0 mm x 6.5 mm were dry pressed and then sintered
in vacuum at 1430 °C for 1 h. The as-sintered specimens were pol-
ished and carburized at 1100 °C and 1200 °C. At each temperature,
different samples were carburized for 90 min, 120 min, 150 min
and 180 min, respectively. The discharged gas was pure argon.

The microstructures of the as-sintered as well as carburized
material were observed by scanning electron microscope operated
at 20 kV (SEM QVANTA200, FEI) in backscattered-electron (BSE)
mode. Compositional depth profiles of the as-sintered and the car-
burized materials were acquired using electron probe microanaly-
sis (EPMA 8705QH2) combined WD/ED microanalyzer operated at
20 kV, the line scans were 100 pm wide. Phase identification of the
materials was determined by X-ray diffraction (Bruker D8 AD-
VANCE X-ray diffractometer), Cu Ko radiation, 20°<26<110°

Fig. 2. BSE micrograph of the as-sintered material. The hard phase appears black
core-grey rim and white core-grey rim, the binder phase appears white and
distributes between the ceramic grains.

angular range, 0.02° angle step. The microhardness was tested on
the cross section of the specimen.

3. Results and discussion
3.1. Microstructure

The microstructure of the as-sintered material shows that the
carbonitride grains, often with a core-rim structure, are embedded
in a tough metallic binder phase, typically in Ti(C, N)-based cermet,
as displayed in Fig. 2.
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Fig. 3. BSE micrograph of the material carburized at 1200 °C for 180 min. The surface is at the left side.
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The cores were undissolved Ti(C, N) from the raw powder. The
rim, which was introduced by reprecipitation of the carbonitride
phases (Ti, Mo, W) (C, N) on the core at different sintering stage,
could be divided into inner rim and outer rim. The inner-rim was
formed during solid state sintering and enriches in molybdenum
and tungsten. The outer rim appearing gray in BSE model was
formed during liquid state sintering and contains less molybde-
num and tungsten than inner rim [9].

The microstructure of the cermets treated by double-glow plas-
ma carburization at 1200 °C for 180 min is shown in Fig. 3. The bin-
der content decreased abruptly in the surface zone down to about
20 um depth, then gradually increased inwards, there was a nota-
ble increase in the binder content between about 40 pm and
70 pm below the surface. The typical core-rim structure in the sur-
face was reserved after carburization. However the rim became
thicker in the area where the binder content was reduced as com-
pared to the as-sintered material.

The EMPA depth profiles are shown in Fig. 4. The results re-
vealed that the elements distributions were constant from surface
to bulk in the as-sintered material. After carburization, a notable
increase in the contents of carbon, nitrogen, titanium, molybde-
num and tungsten was found down to about 40 pum, and the in-
crease ratio in carbon was quite higher than the other elements.
The nickel content dropped to near zero in the surface area down
to nearly 20 um, then increased and reached a summit between

———

about 40 um and 70 um depth and finally fell to a stable value,
which was consistent with distribution of the binder phase.

Since diffusion was substantially faster in the nickel binder than
in carbonitride, the binder would act as the main transport med-
ium during carburization. Considering the strong affinity between
carbon and titanium, tungsten and molybdenum, reaction occurred
as soon as carbon diffused into the nickel binder at high tempera-
ture. Here, the reaction could be expressed as follows:

C + (Ni. Ti. Mo, W) — (Ti, Mo. W)C + Ni (1)

The reaction decreased the concentration of titanium, molybde-
num and tungsten in the alloy binder, caused these metallic ele-
ments to transport outwards and forced nickel to transfer
inwards. The new formed carbides precipitated on original carbo-
nitride grains preferentially, thus, the thickness of the out rim
was increased. Since nickel content decreased in the surface area,
the binder content was reduced correspondingly. It should also
be noted that the relatively high nitrogen content close to the sur-
face resulted from the great decrease in the binder.

3.2. Phase constitution

The XRD patterns of as-sintered and carburized cermets are
shown in Fig. 5. Two kinds of phases were observed in the as-sin-
tered samples, the § phase and y phase. The & phase was the carbo-
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nitride grains while the y phase was the binder. Only & phase was
observed at surface of the carburized cermets. Even at 5 um below
the surface, no y phase was observed. A small quantity of binder
was observed at about 23 pm depth. Fig. 6 shows that the (200)
diffraction peaks of the & phase of the carburized cermets at surface
and 5 pm below the surface were left-shifted, while it kept almost
unchanged at 23 um depth as compared with the as-sintered
material. It is reasonable to estimate that the shift of the 5 phase
diffraction peaks was caused by the increase of carbon in the car-
bonitride. As the carbonitride of the as-sintered cermets was al-
ways nonstoichiometric because of decarbonization and
denitrification during sintering [6], carbon atoms filled the intersti-
tial sites of carbonitride during carburization which could be sim-
ply expressed as follows:

C+ (Ti, W, Mo)(Cy, N, —x), — (Ti, W. Mo)(Cy, Nixv)y (2)
3.3. Performance

The microhardness along the depth is shown in Fig. 7. It was
found that the hardness of the surface area was greatly increased
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Fig. 5. XRD patterns of (a) as-sintered material, (b) 23 pum below the surface of the
carburized material, (c) 5 pm below the surface of the carburized material and (d)
the surface of the carburized material.
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Fig. 6. XRD patterns around the area of the (200) diffraction peaks of (a) as-
sintered material, (b) 23 um below the surface of the carburized material, (c) 5 um
below the surface of the carburized material and (d) the surface of the carburized
material.

163500

16000

I
153300 | T{-

15000

14500

T

14000

HV/MPa

13500

T

13000
12500

12000

T

T 1 1 1 1
60 70 80 90 100
distance from surface/pm

! 1 ' 1 L
0 10 20 30 40 30

Fig. 7. Hardness distribution on the cross section of the carburized sample.

by double-glow plasma carburization while the TRS
(18167]% MPa) was hardly changed, comparing with the as-sin-
tered material (the hardness was 13.550'%20 MPa and the TRS
was 1798713 MPa).

In general, the surface hardness was increased by inducing a
carbonitride-rich layer in the surface zone after carburization. In
the meantime, a binder-rich area was formed in the near surface
during carburization, which was beneficial to the binding between
the surface zone and the substrate.

3.4. Development of the binder-deficient layer

During double-glow plasma carburization, carbon diffused from
the surface to interior of cermets, reacted with the metallic ele-
ments and drove nickel inwards. As a result, a binder-deficient
layer with binder content near zero in the surface zone was
formed. Because the binder was nickel-based alloy, it was reason-
able to determine the thickness of the binder-deficient layer
roughly by measuring the nickel content at different positions of
a graded cermet. The experimental results are shown in Fig. 8.

Since the diffusion rate of carbon was much faster than metallic
elements, the formation of the binder-deficient layer was mainly
controlled by the diffusion of metallic elements and should follow
the parabolic law [5]:

thickness «x vtime (3)

Fig. 8a shows that the growth rate of the binder-deficient layer
of the cermet with lower nickel content was faster under the same
carburization condition, which is in accord with the rule that the
formation of the graded layer is controlled by the diffusion of
metallic elements. However, the growth of the binder-deficient
layer did not follow the parabolic law exactly, it could be ascribed
to the great change of diffusion coefficient of the alloy elements
under ion bombardment [13].

Vacancy mechanism played the most important role in the sub-
stitutional diffusion process. By ion bombardment, supersaturated
vacancies were introduced to the material [14], which increased
the diffusion probability of the atoms. On the other hand, the dif-
fusion activation energy was reduced in the surface area as the va-
cancy activation energy could be provided by ion bombardment.

The vacancies annihilated soon when encountered with inter-
stitial atoms, dislocations or grain boundaries during migration,
thus, a concentration gradient of vacancy was formed. The diffu-
sion coefficient of the alloy elements changed as a function of va-
cancy concentration which induced the development of the
binder-deficient layer to deviate from the parabolic law. A higher
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Fig. 8. Thicknesses of the hard phase-rich layer vs square root of time. (a) Materials
with different nickel content carburized at 1200 °C; (b) materials with 32 wt.%
nickel content carburized at different temperature.

diffusion coefficient was obtained at 1200 °C since the concentra-
tion and activity of vacancies were higher at a higher temperature,
which is in accord with the result shown in Fig. 8b.

4. Conclusions

(1) A 40 pm surface zone enriched in carbon, titanium, molyb-
denum, tungsten and nitrogen and deficient in nickel was
introduced by double-glow plasma carburization, while the
microstructure was influenced down to about 70 um below
the surface.

g T L

(2) The differences of affinity between carbon and the metallic
elements caused titanium, tungsten and molybdenum to
transport towards the surface and nickel inwards during
carburization.

(3) The hardness of the surface area was increased after carbu-
rization, while the TRS was hardly changed.

(4) The formation of the binder-deficient layer was controlled
by the diffusion of the metallic elements but deviates from
the parabolic law. Abundant supersaturated vacancies intro-
duced by the ion bombardment enhanced the diffusion coef-
ficient of the elements.
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