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. This paper depicts a ghost cell method to solve the three dimensional compressible
" time-dependent Euler equations using Cartesian grids for static or moving bodies. In
- this method, there is no need for special treatment corresponding to cut cells, which
complicate other Cartesian mesh methods, and the method avoids the small cell problem.
As an application, we present some numerical results for a special moving body using

step: overset (overlapping) meshes, deforming meshes, and Cartesian ap-
ssentially, with an overlapping mesh technique,™ individual components
’d separately using local structured meshes that overlay a background

Deforming-mesh approaches can be conservative over a time step, mak-
tractive for small deformations. However, for gross boundary motions
th large time steps the quality of the difference stencil can degrade
this distortion. A third alternative regaining popularity is the use

1t: out of a single static background mesh and their boundaries repre-
ifferent types of cut cell, or solid bodies are equipped with ghost cells

277



278 J. M. Liu, N. Zhao & O. Hu

using the immersed boundary. In practice, cut cells may be arbitrarily small and in
cases involving body motion, the cut cell data changes in one of the following four
ways: cut cell becomes solid cell, cut cell becomes an uncut flow cell, cut cell remains
unchanged, uncut flow cell becomes cut cell. Some technique must be employed to
overcome those problems and time step stability restrictions. Several authors use a
merging technique,® % where small irregular cut cells are merged together with a
neighboring regular grid cell. Using this merging technique, then the conservation
is automatically maintained. But this method increases the amount of geometry
processing. Recently, Murman et al® present an implicit approaches for 3d moving
boundaries, and give a detailed space-time analysis is used to present and discuss
the moving-boundary scheme, with particular attention given to complexities aris-
ing in multiple dimensions. In their article, a conservation correction is added to
obtain conservation in 2d, but the correction for 3d is very hard. Furthermore, For-
rer and Berge!! put forward an interesting immersed boundary method to solve a
2d moving geometries. Practice has shown this immersed boundary method to be
very simple and effective. Though the method is not conservable, but the error can
obtain a second order accuracy at the boundary by special treatment for moving
wall pressure. Furthermore, the method avoid the small cell problem. In our article,
we combine a ghost cell method as the one of Forrer et al'l with the isentropic
strategy to calculate a 3d magazine with moving doors, which is embedded in the
fuselage of the fighter plane.

2. Numerical Method and the Treatment of Moving Wall Boundary

In the work presented here we only consider inviscid Euler equation, and a hexahe-
dral, cell-centered finite volume dimensional splitting method with Lax-Friedrichs
numerical flux has been implemented as the flow solver. A MUSCL-type extrapola-
tion using minmod slope limiter, with a formal second order accuracy in space, has
been applied to extrapolate the conserved variables onto the left- and right-hand
sides of each cell face. Following, we will introduce ghost cell method (GCM) for
three dimensional flows with static or moving body. :
Recently, Forrer and Berger!! described the concept of a mirror flow extrapo-
lation of a given solution over a reflecting wall which may be curved or moving at - :
a fixed or varying speed, and developed a Cartesian grid method to treat the cells 5
along a reflecting boundary. In their paper,'! the values of the ghost cell are ob- §
tained from the corresponding extrapolated values from the nearest boundary point £
T,. As an example, we described only for pressure here. Then the corresponding }
ghost cell values are obtained by ;

P(-'L'w) - p(x.ﬁ,) (1)'f

h ’
where z, = z,, + hn, the value of p(z") at the wall obtained by a bilinear interpo-i§
lation. The equation (1) show the solution has a non-zero pressure gradient at thﬂ
wall, which satisfy the theorem that particles moving along the wall change theif§

Pghost = P(l'w) -t wa == -'L'ghostl



Ghost-Cell Method for Inviscid Three-Dimensional Flows 279

speed due to this pressure gradient. Using this Ghost cell method, it can yield a
second order accurate boundary treatment from the results,’! and avoid the small
cut cell problem.

In our simulation, for the simplicity of the code, the reduction of the complexity
of the moving door structure and the improvement of accuracy, we use the sec-
ond order boundary treatment,!! and the isentropic strategy'®1? to give the ghost
boundary conditions as follows

p(zw) — p(zf)

Dghost = p(mw) + |$w == xghoatl h )
1/7
h
Pghost = PA (M) )
PA

Vghost =Va-— 2(WVA : n)n . 2(‘/8 : n)n:
Dghost
v—1
.. where V4 and V, are flow velocity, moving solid boundary velocity and -y is the
3 constant ratio of specific heats, respectively. For two dimensional static or moving
" boundary, we can see Fig. 1. For each of the ghost cell centers (e.g. cell ghost), his
- corresponding symmetric point (e.g. point A) is determined at a location exterior
7 o the body and reflected symmetrically with respect to the body surface. The cell
enters surrounding each symmetric point are determined. As an example, points
“%iig,b,c and d are the cell centers surrounding point A in Fig. 1. The value of the
: erved variables U at the point A can been determined by a bilinear interpolation
a linear interpolation corresponding to distance:

e—l4aly, + e~ 146, 4 e~l4cly, 4 e~14dly, (3)

e—lAal 4 ¢—|A4b] 4 g—|Ac| 4 o—|Ad] ’

‘:'elAal, |Ab|, |Ac|, |Ad| are the distances between A and a,b,c,d respectively.
hermore, the extension to three dimensional flow problem can achieved by the
ormula as (3).

1
Eghost = o+ §Pghost |V_qhost |2 ) (2)

A:

we present the results for magazine with moving door. The shape of magazine
ving doors is shown in Fig. 1. In our simulation, we consider a flow with
fream Mach number of 0.8, and the angle speed of door is 150°/s. Because of
symmetry, only one half of the results of the flow field has been shown.
2 present the results at time t = 5/150s, 30/150s, 60/150s, 90/150s, 120/150s.
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Fig. 1. Ghost jnoving boundary conditions and the shape of magazine.

s

Fig. 2. 70 fluid pressure contours, when time t = 1/30s, t = 1/5s, t = 2/5s, t = 3/5s, t = 4/5s,
respectively.
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Abstract. In this paper, an immersed boundary algorithm is developed by combin-
ing the ghost cell method with adaptive tree Cartesian grid method. Furthermore,
the proposed method is successfully used to evaluate various inviscid compress-
ible flow with immersed boundary. The extension to three dimensional cases is
also achieved. Numerical examples demonstrate the proposed method is effective.
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1 Introduction

This paper focuses on the Ghost Cell method (GCM) and its applications for inviscid
compressible flow on adaptive tree Cartesian grids. As we all know, a continuous
obstacle of computational fluid dynamics (CFD) for configurations with complex ge-
ometry is the problem of mesh generation. Although a variety of grid generation tech-
niques are now available, the generation of a suitable grid for a complicated, multi-
element geometry is still a tedious, difficult and time-consuming task.

At present, the spatial discretization methods mainly have three approaches [1, 2]
for dealing with complicated geometry: unstructured grids, body-fitted curvilinear
grids, and Cartesian grids. Unstructured grids mainly use triangles in two dimen-
sional flow, tetrahedrons or prisms in three dimension. The advantages lie in the fa-
cility of mesh generation for complicated geometry. But the generation is not toilless,
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and still hard to get a good quality grid. Also the memory requirements and com-
putational time are in general high. The main advantage of structured grids follows
from the property that the indices i, j, k represent a linear address space (computa-
tional space), since it directly corresponds to how the flow variables are stored in the
computer memory. Furthermore, more importantly in CFD applications, it gives more
accurate results due to the discretisation methods used in most flow solvers. But there
are also disadvantages. These are the generation of single structured grids for com-
plex geometries, also time-consuming, and it can produce highly skewed grids too.
In order to deal with complicated configurations, multiblock structured grids must be
used. However, very long times are still required for the grid generation in the case of
complex configurations.

A third alternative is the Cartesian grid approach. Conceptually, this approach
is quite simple. Solid bodies are cut out of a single static background mesh and their
boundaries represented by different types of cut cell, or solid bodies are equipped with
ghost cells using the immersed boundary. Most previous work on Cartesian grids for
the compressible Euler equations are based on Cartesian finite volume method [3]. But
these methodologies may suffer stability problems when an explicit time step is used,
cut cells become very small, and degenerate cells will be encountered. Generally, in
two dimensions, a degenerate cell is defined as a cut-cell where the irregularly shaped
(embedded) boundary (i) intersects the cell at more than two points or (ii) interacts
any cell face at more than 1 point [4]. Some technique must be employed to overcome
those problems and time step stability restrictions [4,5]. Jia et al. [4] present a robust
and efficient hybrid cut-cell/ghost-cell method to overcome the degenerate cell, and
the heat equations are considered. Several authors [2, 6] use a merging technique,
where small irregular cut cell is merged together with a neighboring regular grid cell.
By using this merging technique, the conservation is automatically maintained. But
this method increases the amount of geometry processing. Other methods include
Berger et al. [7, 8] use rotated boxes (h-box method) to enhance stability and, Colella
and coworkers [9,10] use flux-redistribution procedures. Furthermore, embedded or
immersed boundary ghost cell methods may be also a good choice, and Cartesian grid
finite difference schemes for CFD problems have proven to be quite efficient.

Recently, Sjogreen and Petersson [3] develop an embedded boundary finite dif-
ference technique for solving the compressible two- or three-dimensional Euler equa-
tions in complex geometries on a Cartesian grid, and slope limiters are used on the
embedded boundary to avoid non-physical oscillations near shock waves. Dadone
and Grossman [11,12] provide a novel finite difference ghost cell method on a Carte-
sian grid, which considers the effect of curvature, and enforces symmetry conditions
for entropy and total enthalpy along a normal to the body surface. The results on
Cartesian grids indicate that the ghost cell method of [11,12] is remarkably convergent
in grid and presents dramatic advantages with respect to the widely used first- and
second-order pressure extrapolation techniques on body-fitted polar grids. In above
mentioned papers of embedded or immersed boundary ghost cell methods, uniform
grid or any grid clustering near the body are used, which must be maintained to the
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far-field boundary. In [13], Dadone and Grossman give a far-field coarsening and
mesh adaptation method for Cartesian grids. Cartesian grids in conjunction with tree
data structure are a natural choice for solution-adaptive grids. In this paper, the ghost
cell methods with the adaptive tree Cartesian grids, we make a further study for the
ghost cell immersed boundary method in inviscid compressible flows, and give some
applications of the proposed method. Moreover, the conservation of the method is
studied. The extension to three-dimensional flow is also presented.

The remainder of the paper is arranged as follows. In section 2, the high order
numerical scheme for Euler equation is described. The boundary treatment is shown
in section 3. In section 4, we give the tree data structure and the treatment based
grid adaptation. The numerical results obtained using the ghost cell method on the
adaptive Cartesian grid are presented in section 5. Concluding remarks are made in
the final section.

2 Governing equations and numerical methods

2.1 Governing equations

The inviscid compressible Euler equations can be given in vector form explicitly ex-
pressing the conservation laws of mass, momentum and energy. The equations in a
Cartesian coordinate system can be written as

U | 9F(U) , 9G(U) , 9H(U) _

ot ox dy 0z ' 1)
where
e ] Copu ] o] [ pw ]
ou put+p ouv puw
U= | pr |, F= puv , G=| pt*+p |, H= pow
pw puw pPUwW pw2 +F
| PE | | u(pE+p) | | 2(PE+p) | | w(pE+p) |

The variables p,p, u, v, w are the pressure, the density, and the three Cartesian com-
ponents of the velocity vector, respectively, and E represents the total energy per unit
mass. The pressure p is obtained using an equation of state for ideal gases

p= ('7—1)(4015— %(u2+vz+w2)). (2.2)

2.2 Numerical methods

In order to solve the multi-dimensional Euler equations, dimensional splitting is ap-
plied. We use one-dimensional Godunov’s method in each coordinate direction, re-
spectively. A MUSCL-type extrapolation using a minmod slope limiter, with a formal

-----
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second order accuracy in space, has been applied to extrapolate the conserved vari-
ables onto the left- and right-hand sides of each cell face. An approximate Riemann
solver is used to get face flux. For every one-dimensional problem, time discretization
use the optimal second TVD Runge-Kutta method [15].

A particularly simple and robust approximate Riemann solver, called HLL, was
proposed by Harten, Lax and van Leer in [14]. But it has the serious flaw of diffusing
contact surfaces. This is mainly because the HLL solver reduces the exact Riemann
problem to two pressure waves and therefore neglects the contact surface. An im-
proved version of the HLL Riemann solver, named HLLC, is proposed by Toro [16],
which is a modified three waves solver. This HLLC scheme is found to have the fol-
lowing properties [17]: (1) exact preservation of isolated contact and shear waves, (2)
positivity preserving of scalar quantity, and (3) enforcement of entropy condition. The
HLLC solver is versatile, and has been successfully used in various inviscid or vis-
cous compressible flow on multifarious grids. Due to the significant advantages, in
this work, HLLC solver is adopted as the approximate Riemann solver to discrete the
convection flux on adaptive tree Cartesian grids.

The HLLC flux is defined by [16,18]

F, it $: >0,
- F(U*), it S <0< 8,
FHLLC = P(UM), if Sm <0< 5w, 23)
8 if Sgr <0,
where
[ o] ] ] p1(SL —q1) ]
(ou); (S —q1)(pu) + (p* — p1)nx
Uur=| (pv)i | = | Sc—aq)(evhi+ (" —prny |,
(pw); (St —q1) (pw)1 + (p* — 1)1z
| (PE)] | | (S —q1)(PE)1 — p1g1 + P*Sm
. ] or(Sr — 4r) ]
(ou); (Sr — qr)(pu)r + (P* — pr)nx
Uy = | (ov); | =Qr | (Sk—4r)(pv)r+ (p* —pr)ny |,
(ow); (Sr — qr) (pw), + (p* — pr)12
| (pE); | | (SkR —4r)(PE)r — Pr4r + P*Sm _
i p;Sm ! I prSM {
(pu);Sm + p*ny (pu);Sm + p*ny
F'=FU)=| (pv);Sm+p*n, |, F =FU;)=| (pv);Sm+p*ny |,
(ow);Sm + p*n, (ow);Sm + p*n;
| ((PE)] +P")SMm | | ((PE); +P*)Sm |

0O = (SL—SM)_I, 0, = (SR—SM)_I.,
p* = pi1(q1 — SL)(q1 — Sm) + p1 = p+(9- — Sr)(4r — Sm) + Pr,
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and
g = uny + ony + wnz,

with 7i=[ny, ny, n;]” being the unit normal vector to the interface. Intermediate wave
velocity Sy is taken from Batten et al. [19]

5y = Prar(Sk —4r) —pa(SL— @) + pr —pr
pr(Sr = 4r) —p1(SL — 1)

Signal velocities S| and Sy are defined as

S1. = min (A (L), A (UR)),
Sx = 008X (A (UL, ), A (RI7)),

with A;(UR%) and A,,(UR%) being the smallest and largest eigenvalues of the Roe
matrix.

In the approximate Riemann solvers, a higher-order approximation must be in-
terpreted in terms of flux values to achieve second order accuracy at control-volume
boundaries. This paper use van Leer’s monotone upstream-centred scheme for con-
servation laws (MUSCL) approach to get second-order accuracy, and minmod limiter
to damp spurious oscillation, which are shown as follows [20]

—~
—~ ~

1
R _
Uiy =Uj+1— [(1 - k)AH%u + (1 +k)Aj+%u] "

1 < .
L 4 4= _

(2.4)

where

AH%u s mmmod(AjJr%u,wAj_%u),

~
o~

AH%u = rmnrnod(AH%u,wAH%u),

minmod(x, wy) = sgn(x) max{0, min[|x|, wysgn(x)]},

and k is a coefficient of MUSCL scheme. When set k=1/3 , we can get a third order
upwind scheme for uniform grid. w is a constant specified by user, generally, w=1.

3 Ghost cell methods on Cartesian grids

Recently, Dadone and Grossman [11, 12] present some systemic results about a novel
ghost cell method for static body on Cartesian grids. In their papers, the ghost cell val-
ues are developed from an assumed flow field model in vicinity of the wall consisting
of a vortex flow with locally symmetric distribution of entropy S and total enthalpy H
per unit mass along a surface normal, and take into account the effect of curvature. If
we make R the signed local radius of curvature of the wall, V; the velocity component



