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Abstract High resolution imaging in the terahertz (THz) frequency range is investigated
theoretically in this paper through the use of the high frequency methods in computational
electromagnetics (CEM). Physical optics (PO), shooting and bouncing ray (SBR) and
truncated-wedge incremental length diffraction coefficients (TW-ILDCs) methods are
combined together to compute the scattered fields, which are then used to construct the
inverse synthetic aperture radar (ISAR) images through two dimensional fast Fourier
transform (2D-FFT). The corresponding ISAR images clearly show that high range and
bearing resolution can be easily realized for THz carrier waves with broad bandwidth.

Keywords THzimaging - High frequency method - TW-ILDCs

1 Introductions

In the past decade, researchers and technicians around the world have paid much attention
to the theoretical and experimental investigation of THz technology [1]. Most of them focus
on THz wave production [2], detection [3], spectroscopy [4], communication, imaging [5]
and so on. THz imaging is the most active one for its existent and potential applications,
such as security sensing, quality control inspection, biomedical imaging, efc. Since the first
raster scanning THz image was reported in 1995 [6], many THz imaging technologies have
been developed and many imaging methods have been proposed on how to enhance the
resolution. Far-field imaging techniques with resolutions close to the diffraction limit have
been demonstrated on biological tissues and semiconductors [5, 7]. Subwavelength
resolutions require near-field techniques or new materials. Resolutions down to 7 um were
achieved using metallic subwavelength apertures [8, 9] or optically gated apertures [10, 11].
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However, exact numerical computation and simulation of the THz waves transmission
characteristics still impede further theoretical study of THz imaging. In the real world,
many physical small objects cannot be regarded as electrical small ones as the frequency
goes into THz regime. So the full wave analysis methods, such as the method of moments
(MoM), the multi-level fast multiple algorithm (MLFMA) [12, 22] and the finite element
method (FEM), which can be used to solve many electromagnetic (EM) problems precisely,
become disabled for the prohibitively increasing memory requirements (MR) as well as
computational complexity and time (CCT) [13-16]. Altemnatively, high frequency (HF)
methods, such as geometrical optics (GO), physical optics (PO), geometrical theory of
diffraction (GTD), physical theory of diffraction (PTD), equivalent electric current (EEC)
and incremental length diffraction coefficients (ILDCs) can be implemented to solve the HF
problems asymptotically. And the higher the frequency is, the more accurate result of HF
methods we can obtain. This is due to the fact that HF methods are based on the asymptotic
expansions with respect to inverse powers of w ( or a large parameter proportional to w) of
solutions to boundary value problems for homogeneous or inhomogeneous Helmholtz’s
equation (or wave equation derived from Maxwell’s equations) [17]. So in this work, HF
methods including PO, SBR [18] and TW-ILDCs [19] are combined together in the
numerical simulations and ISAR imaging in the THz frequency range. Small angle rotation
imaging or the so called Range-Doppler imaging method is implemented to construct the
ISAR image. Simulations show that high bearing and range resolution can be easily realized
for THz carrier waves with broad bandwidth. In the following sections, HF frequency
methods and imaging principle are first outlined, then the correctness and applicability of
PO, SBR and TW-ILDCs to the scattering problem in THz frequency range are discussed
and analytical models are built, finally some numerical results are given to verify our
analysis and conclusions.

2 Principles

In the THz frequency range, an 1mm *1mmx1mm metallic cube must be regarded as an
electrical large object whose EM feature could be computed in terms of MoM or MLFMA
with high MR and CCT. When the cube’ size changes to 1cm > 1cmx1cm, these so-called
exact methods become disabled. But the HF methods can easily handle this kind of
problems without losing much precision, which are commonly used in the analysis of
electrical large EM scattering and radiation problems for its low MR and CCT. So in this
article, PO, SBR and TW-ILDCs methods are employed for computing the EM scattered
field of PEC targets.

As we know, the PO method is a well-known and widely used HF approximation
technique for the calculation of EM field scattered from perfect electrical conducting (PEC)
structures. It’s essential idea is based on the assumption that the induced current density J o
is only localized on the illuminated surface in connection with the incident magnetic field H
in terms of the equation

JPO(I') = 280 % Hlncia’en/(r)’ (1)

where the coefficient § accounts for the shadowing effects. If the point of observation r lies
in the shadowed region § must be set to zero. Otherwise § equals 1. This implies that in
practical applications the contributions from edges, corners and all mutual interactions such
as multiple reflections are neglected. This kind of treatment evidently cuts off a lot of
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memory requirement and running time as opposed to MoM and MLFMA. SBR technique is
a combination of GO with multi-reflections and PO. It was first proposed by H. Ling [18] to
calculate the backward RCS of structures with cavity and then extended to arbitrary
complex scattering problems. Also the diffraction contribution of edges and creeping
waves, which are very important for precision improvement in HF methods, are not
considered in SBR. Among the wedge diffraction computation techniques, the TW-ILDCs
method [19] is a high precision and robust one. During 2002-2004, the TW-ILDCs and the
shadow boundary incremental length diffraction coefficients (SB-ILDCs) [20] method are
both integrated in the SBR tracing code suited in Xpatch [21] to consider higher-order
diffraction phenomena such as the creeping waves and the truncation effects due to the
diffraction from finite sized wedge faces. For detailed formulas and manipulations of PO,
SBR and TW-ILDCs, one can refer to Ref. [18, 19]. Then the small angle rotation imaging
is implemented through small rotation of the incident plane wave to obtain high bearing
resolution and broad bandwidth to obtain high range resolution. We remark that although
we rotate the direction of the incident plane wave we can consider that the object is rotated
instead because their relative position can be exchanged. As we know, when the rotation
angle is small and the bandwidth is narrow, the imaging data can be approximated as a
rectangular spectral window. In such circumstances, the two dimensional data are
decoupled and the image can be constructed through 2D-FFT directly. When the rotation
angle is large and the bandwidth is broad, the two dimensional data do not satisfy the
decoupling condition. So the polar coordinate data must be first transformed to the
rectangular coordinate form through interpolation and then used to construct images
through 2D-FFT. In this paper, small angle rotation is assumed that the two dimensional
data can be viewed as decoupled and the 2D-FFT is directly used to construct the final
ISAR images. The transformation formula can be simplified as

2o Omax [ Kmax
flx,y) = /w /‘ | kF (k, ¢) exp|j2rk(y cos ¢ — x sin ¢)]dkdg, (2)

in which F(k,¢) is the radar echo information and @ is the rotation angle, k is the
wavenumber in free space. ¢, and ¢p.x are the initial and final rotation angle respectively.
kmin and kpax are the minimum and maximum wavenumber according to the scanning
frequency from fiin 10 frax- Amin = 27fmin/C, kmax = 27fmax/C. C is the velocity of light in
free space. f(x,y) is the corresponding estimation value of the image. For this two fold
integration we always transform it into progression and choose a series of angle and
frequency sampling points to give an approximation, from which the ISAR image value can
be finally obtained for each coordinate (x,y).

Now we briefly explain how these ISAR images are constructed and how these sampling
points are chosen to make the whole image range accommodate the whole real object. If we
denote the bearing resolution as §, = C/2B, in which C is the velocity of light in the
vacuum and B = fi.x — fmin iS the transmission bandwidth. Also we can denote the range
resolution as 6. = 1/2¢, in which X is the wavelength according to the scanning center
frequency f; = (fmax +fmin)/2 and ¢ = ¢, — @i, is the scanning angle range. Under
normal circumstances, in order to make the image look more like the real target, the bearing
and range resolution is assumed to be equal, that is §, = 6. = 6. And then we must choose
the sampling points N in both the bearing and range direction according to the resolution §
and the actual maximum length L of the target or the whole scene being simulated.
Actually, if 2*~! < L/§ < 2%, then N=2". For an example, if §=0.1m and L=10m, than x=7
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Fig. 1 The plate and cube model.

and N = 27 = 128. In addition, the radar echo information F(k,¢) of the whole target or scene
is simulated for each sampling point according to different frequency f; and angle ¢;, in which

fmax _fmin

and
o ¢max_¢mm . .
¢i_¢mjn+ N—1 (l ])a 1= la 7N (4)

Finally the ISAR images can be computed according to Eq. 2.

3 Simulations and analysis

First we compute the magnitude and phase of the electric field in the far field region of a
plate and a cube shown in Fig. 1 in terms of PO/PO + TW-ILDCs compared with MLFMA

Fig. 2 The magnitude of the Worr—~—1—v1 T T T T T T
scattered electric field of a plate 10 —— MLFMA i
in the far field. o] l — — PO+TW-ILDCs

2: J| ?L -
T 1L 48 ‘!‘i’_"_!f_.*»

D
Llea

0 20'4-0 80 80’160 150 14;0 1&) 1&0
Degrees Azimuth (6=90°, $=0°~180")
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Fig. 3 The phase of the scattered 180475
electric field of a plate in the far 150 4
field.
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to verify that HF methods can be utilized for radar imaging simulations. For calculating
both the magnitude and phase of the far field, we neglect the factor e /¥ /r. The plate has
the size of 1mx1m and the cube has the size of 1mx1mx1m. The frequency is set as
3 GHz. The magnitude and phase are given in Fig. 2 (Fig. 4) and Fig. 3 (Fig. 5)
respectively, which clearly show that the HF methods are effective and adequate in the EM
field computation in the high frequency range. We also have verified in Ref. [23] that with
the frequency goes into the THz regime, these so-called high frequency methods are still
effective for simple PEC objects with flat planes.

These far field value including the amplitude and the phase are called the echo information,
which can be used to construct the ISAR images through 2D-FFT. The generation of a two-
dimensional (2-D) ISAR image can be constructed by plotting the intensity of the echoes as a
function of frequency (that equates to the range) and angle. The term resolution refers to both
the bearing resolution of the radar as determined by the object’s rotation angle and the range
resolution as determined by the transmitted bandwidth. The definition of high-resolution
depends on the context, and in this instance is deemed to be the resolution that is required to
identify natural and manmade features useful for autonomous applications. The THz signals,
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Fig. 5 The phase of the scattered e I R e e B I S
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which have large transmission bandwidth, can be used to generate high-resolution ISAR
images.

In order to illustrate the difference between GHz wave and THz wave, we first test a
simple structure which has four 0.1mx0.1m rectangular plates with the distance of 1m
shown in Fig. 6 and generate the ISAR images from GHz frequency range to THz
frequency range in Figs. 7 and 8 respectively. The elevation angle is chosen as §=89.9° that
the image can constructed from the plane perpendicular to the z axis. The azimuth angle
starts from ¢=43.281° to $=46.719° in the GHz frequency range and from ¢=44.7° to
¢=45.3° in the THz frequency range to give a small rotation of the structure. The
transmission bandwidth B is chosen as B=0.6 GHz starting from 9.7 GHz to 10.3 GHz in
the GHz frequency range and B=10 GHz starting from 0.995 THz to 1.005 THz in the THz
frequency range. The imaging results indicate that as the frequency rises and the bandwidth
increases, the range resolution becomes higher and the four plates’ corners can be clearly
figured out. So from GHz to THz both the bearing and range resolution are enhanced.

Fig. 6 Four 0.1mx0.1m rectan- Z
gular plates with the distance of

A
1m.
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Fig. 7 The ISAR image of the f=9.7 GHz ~ 10.3 GHz, Elevation Angle = 89.9 degree,
four plates structure in the GHz Azimuth Angle = 43.281 ~ 46.719 degrees, 16 sampling points
frequency range. T
Loe
Los
20
5
D
f=2]
o4
02
aom

Then a more complex structure composed of four cubes is considered in Fig. 9 and SBR +
TW-ILDCs method is chosen to calculate the scattered field for increasing the accuracy. Up to
3 time multi-reflections are considered in SBR for this complex structure and TW-ILDCs is
implemented to compute the diffracted field. Finally these two fields are added together to
give the total scattered field, which is then used to construct the ISAR image shown in
Fig. 10. The elevation angle is chosen as #=60° and the azimuth angle starts from ¢=40.703°
to $=49.297°. And the transmission bandwidth B is chosen as B=150 GHz starting from
0.925 THz to 1.075 THz that the relative bandwidth is further increased. For each cube there

Fig. 8 The ISAR image of the f = 995 GHz ~ 1005 GHz, Elevation Angle = 89.9 degree,
four plates structure in the THz Azimuth Angle = 44.7 ~ 45.3 degrees, 256 sampling points
frequency range. o — 1D
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Fig. 9 Four 0.01mx0.01mx 7
0.01m cubes with the distance of A
0.03m.

" <-0.01

are seven bright points in the ISAR image, which indicate the cube’s seven comers and strong
scattering points. Only one point is lost for each cube in the image because this point is
invisible to the incoming wave.

4 Conclusions

In this paper, the ISAR images of two 3D real targets in the THz frequency range are
investigated via the HF methods. The reliability and correctness of the analysis have been
verified by numerical results, from which we observe that a great enhancement of bearing

and range resolution is obtained from GHz to THz frequency ranges. Hence we can fully
use this high resolution in the target identification and detection.

Fig. 10 The ISAR image of the f =925 GHz ~ 1075 GHz, Elevation Angle = 60 degree,
four cubes structure. Azimuth Angle = 40.703 ~ 49.297 degrees, 64 sampling points
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Abstract—Dual Buck inverter (DBI) is a new topology with
characteristics of high frequency and high efficiency. Just like
half bridge inverter, the output voltage is a bipolar PWM
waveform and voltage stress is high. To overcome these
problems, a novel three-level dual Buck inverter, which has
uni-polar PWM waveforms output and low voltage stress, is
proposed. And the half load-cycle mode of DBI remains in the
new inverter. However, it may lead to over-voltage when the
inductor current is discontinuous. Thus, two inductors of the
inverter are coupled together, and the bridge voltage can be
clamped, and the size of magnetic component and filter is

reduced simultaneously. The topology remains the
characteristics of high efficiency and high reliability.
Experimental result verifies the analysis described.
Keywords-inverter;  three- level half  bridge; integrated
magnetics.
13 INTRODUCTION

Compared with the conventional bridge-inverter, DBI has
special characteristics of no shoot-through problem and no
reverse-recovery of the parasitic diode of the switch and
realizes high frequency and high efficiency. There are many
similarities between DBI and half bridge inverter. Bus voltage
surpasses twice of the maximum of output voltage. The
voltage stress of the device is high, the utilization rate of the
direct voltage is low, and works at bipolar modulating mode
and harmonic contents of the output
high[1].Furthermore, too large volume
component still exists in DBI.

Recently, multilevel technology is greatly concerned and
researched. Because of the limitation of the manufactory
technology, voltage endurance is inadequate. For high-voltage
converter, the power switch can be in series. However, due to
the inconsistency of the parameters and the asynchrony of the
power switches, it is difficult to achieve the balance of voltage
and it also brings about over-voltage of power switches so as
to lose reliability. Multilevel technology is a good method to
solve the problem of the series of power switches and ensures
the voltage stress of the power switches to clamp to the
voltage of capacitor both in transient and steady stage. The
three-level double buck half bridge inverter can change the

of magnetic
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under Grand 50907033.

voltage is -

output voltage of arm bridge into uni-polar voltage. All of
these will be discussed in detail in the following.

II. THENOVEL THREE-LEVEL DUAL BUCK
INVERTER

The circuit topology of DBI is shown in Fig.l. DBI
adopts half period work mode[2] [3]. During the positive half
cycle, the circuit Buck 1 works ,which is composed by the
power transistor VT, freewheel diode VD,, filter inductanc e
L, and filter capacitor C; ;during the negative half cycle, the
circuit Buck 2 works ,which is composed by the power
transistor VT,, freewheel diode VD, filter inductance L, and
filter capacitor Cy. u, is output voltage, i; is inductor current:
in the positive half cycle, it is i;; ,the current of inductor L,; in
the negative half cycle , it is i;, , the current of inductor L,; u,
is the voltage of A, uy is the voltage of B.The type waves are
shown in fig.2(t=5ms/div).
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Fig.1 Dual Buck half bridge inverter
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Fig.2 Typical waveforms of DBI
However the voltage stress of power switch of DBI is

high, if the input direct bus voltage is +Uy, the voltage stress
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