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ADDITIVITY OF LIE MAPS ON OPERATOR ALGEBRAS

JIA QIAN AND PENGTONG LI

ABSTRACT. Let o/ be a standard operator algebra which does not contain
the identity opcrator, acting on a Hilbert space of dimension greater than
one. If @ is a bijective Lic map from &/ onto an arbitrary algcbra, that is

®(AB — BA) = ®(A)®(B) — ®(B)®(A)

for all A,B € «/, thcn @ is additive. Also, if & contains thc identity
operator, then there exists a bijective Lic map of .« which is not additive.

1. Introduction

Throughout, for a Hilbert space ¢, we write B() for the algebra of all
bounded linear operators on ##. Usually, a standard operator algebra on ¢
will mean a subalgebra of B(.7¢) containing all finite rank operators. Let &/
and 4 be two algebras or rings. A map ® : & — A is called a Lie map if it is
multiplicative with respect to the Lie product AB — BA, that is

®(AB — BA) = ®(A)®(B) — o(B)D(A)

for all A,B € .«¢/.

Characterizing the interrelation between the multiplicative and the additive
structures of a ring is an interesting topic. This question was first studied by
Martindale who obtained the surprising result that every bijective multiplica-
tive map from a prime ring containing a nontrivial idempotent onto an arbitrary
ring is necessarily additive [10]. For operator algebras, the same problem was
treated in [1, 7, 15]. In the papers (2, 3, 8, 9, 11, 12, 13|, the additivity of maps
on operator algebras which are multiplicative with respect to other products,
such as the Jordan product AB + BA or the Jordan triple product ABA, were
investigated. Also, the papers [4, 5, 6, 14] studied the similar questions for
elementary maps and Jordan elementary maps on rings or operator algebras.

In this note, we shall study the additivity of Lie maps on operator algebras.
More precisely, it will be proved that every bijective Lie map on a standard
operator algebra & which does not contain the identity operator, acting on a
Hilbert space .7 of dimension greater than one, is automatically additive. In
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particular, if dim . = oo and & is either the ideal of all finite rank operators
or the ideal of all compact operators in B(#°), then every bijective Lie map on
&/ is additive. Furthermore, we show that if ./ contains the identity operator,
then there must exist a bijective Lie map on .« which is not additive.

It should be mentioned that Lu in [8] proved that a bijective Jordan map on
a standard operator algebra which is allowed to contain the identity operator,
is additive. Although the basic ideas used in our proof are similar to those in
[8], some concrete techniques are new.

2. Result and Proof

Our main result reads as follows.

Theorem 1. Let 32 be a real or complex Hilbert space with dim % > 1,
& C B(A) be a standard operator algebra which does not contain the identity
operator I and & be an arbitrary algebra. If ® : &/ — A is a bijective Lie
map, then ® is necessarily additive.

We shall organize the proof of Theorem 1 in a series of lemmas, in which
the notation of the theorem will be kept. Since dim.# > 1, we can take a
non-trivial orthogonal projection P; which has finite rank. Then P; € «/. Put,
P, = I — P;,. Note that P, is not in &. Let «;; = P&/ P}, i,j = 1,2. Then

A = ) D 2 ® oy D o

which is the Peirce decomposition of /. This idea is essentially from Martin-
dale [10].

Lemma 1. ®(0) =0.
Proof. 1t is obvious. O

Lemma 2. If A, B,S € & such that ®(S) = ®(A)+®(B), then for allT € &,
we have

(1) (ST —-TS)=®(AT —TA) + ®(BT - TDB),

(2) (TS — ST) = ®(TA— AT) + ®(T'B — BT).

Proof. Let T € «/. Then
(ST —-TS) =2(S)®(T) — &(T)®(S)
= (2(A4) + 2(B))2(T) — (T)((A) + 2(B))
=®(A)(T) — &(T)P(A) + 2(B)®(T) — (T)®(B)
=®(AT —TA) +®(BT — TB).
So (1) holds. Similarly, we can prove (2). O

In the following, the notation A;; will denote an arbitrary element in .«7;.

Lemma 3. Let S = S1; + S12 + So1 + Sop € &7
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(1) If’[‘.,-jS_,-k =0 f07' all T‘ij,l S i,j,k S 2, then Sjk, =0. [fSMT,J =0 fOT‘
all T;5,1 <i,j,k <2, then S; = 0;

(2) If ST — TS € (JU for all Ti5.1< 4 # 7 <2, then Sj,’ =0

(3) If STj; — Tj;S € 5 for all Tjj,1 < @ # 7 < 2, then Sj; = 0 and
Sj; = AP; for some scalar A,

(4) If STJ‘]' = 713_75 (S .Sjji fOT all Tjj,l <1 76 J < 2, then S.,jj =0 and
Sj; = AP; for some scalar A;

(85) If STy; — Tj;S € & for all Ty, = 1,2, then S;; = S;j = 0 Jor
1<i#£j<2.

Proof. (1) It is [8, Lemma 2(ii)].

(2) By the hypothesis, we have obviously S;;Ti; = P;(ST;; — T;;S) = 0 for
all T;; with i # j. Hence Sj; =0 by (1).

(3) Similar to (2), we can easily obtain that S;; = 0. Also, for every T};, we
have P,(ST” B T]JS).PJ = 0. Hence Tj;S;; = S;;T};, which implies that S;;
commutes all operators in B(P; ). It is well known that S;; = AP; for some
scalar A.

Similarly, we can prove (4) and (5). O

Lemma 4. For 1l <i# j <2, we have

(1) ®(Aii + Aij) = ©(Aii) + B(Ayj);

(2) (I’(A” + Aji) = @(A“) + (I)(AJ,_)
Proof. (1) We only give the proof of (1), and for (2) the proof goes similarly.
Since P is surjective, there is § = Sy; + S12 + S21 + S22 € .7 such that

O(S) = ®(Aii) + 2(As5).
For any T};, by Lemma 2 and noticing that ¢ # j, we have
®(5T;; — T;5;5) = P(AuTy; — Tj5Au) + P(AyTy; — Tj5Aij)
= ®(0) + ®(Ay;Tj;) = (A T5).

It follows from the injectivity of ® that
(1) STj5 — Tj;8 = AisTj; € 5.
So Sj; = 0 and S;; = AP; for some scalar A by Lemma 3(3). Also, from (1) we
get that S;;T;; = A;;Tj; for all Tj;, and hence S;; = A;; by Lemma 3(1).

For every T;;, applying Lemma 2 we can similarly get that ®(ST;; — T;;5) =
®(A;;T;;), which implies ST;; — T;;S = A;;T;;. Therefore

A;iTy; = Py(STi; — Ty S)P; = SiTy; — Ti3855 = SuTij — ATy
and so S;; = A;; + AP;. Thus
S = S;+ S,;]' + Sji + Sjj
(A + AP;) + Aij + 0+ A\P;
= A+ A+ Al

Since I ¢ &/, we have A = 0. This proves S = A;; + A;j, as required. O

Il
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Lemma 5. ®(Tj;A;j + BijS;jj) = ©(TiiAij) + ©(Bi;Sjj) forl <i#j<2.
Proof. Making use of Lemma 4, we have
O(TiiAij + Bi;Sj5) = ®((Tui + Bij)(Aij + Sj5) — (Aig + S5;)(Tia + Bi))
= ®(T3i + Bi;)®(Ai; + Sj;5) — ®(Ai; + Sj5)2(Tii + Bij)
= (®(Tii) + (Bi;))(P(As5) + (S55)) — (2(As5) + 2(S;5))(P(Ti:) + 2(Bij))
= (P(T3:)®(Aij) — ©(Ai;)2(Tii)) + ((T3:) R(S55) — (S;5)P(Tii))
+ (®(Bi;)®(Aij) — ®(Aij)P(Bij)) + (B(Bi;)2(S55) — B(S55)P(Bi;))
= ®(T;:Aij — AijTi) + (T3:S;5 — Sj7Ti)
+ ®(Bi; Aij — AijBij) + ®(Bi;Sj; — S55Bi;)
= ®(TiiAsj) + ©(Bi;Si5),
completing the proof. O
Lemma 6. ®(A;; + B;;) = ®(A;;) + ®(Byj) for 1<i#j<2.
Proof. Choose S = S11 + S12 + S21 + So2 € & such that

(2) D(S) = D(As5) + ®(Byj).

For any T;;, T}, by Lemmas 2, 5, we have

(3) ®(ST;j; — Tj;5) = ®(AiTj;) + B(Bi;Tj;),
and

®(T;:STj; + T3;STi)
= O(Tu(S8T); — Tj55) — (STy; — T555)Ts)
= ®(T:Ai;Tj; — AijT;;Tu) + ®(T5:Bi; Ty — BijTj5Tis)
(T3 AijTy;5) + ®(Tii Bi;T;)
®(Tii(Aij + Bij)T55).
Thus T;;ST;; + T;;STi = T3 (Aij + Bij)Tj;. Multiplying this equality by P
from the left, we get T3;ST;; = Tii(Asj + Bij)Tj;. It follows from Lemma 3(1)
that S,jj = Aij + Bij.

For every T;;, applying Lemma 2 to (2) and (3) respectively, we get
ST;; — T8 =0,
(8T35 — T335)To; — Ti; (ST;; — Tj;8) = 0.
It follows easil_y that Sji =0and T‘ij (ST” - T]7S) = 0. Hence S]‘jTjj = TI'J'SI'J'
by Lemma 3(1), and so there exists a scalar A such that S;; = AP;. Also,
SiiTyj — ATij = STy — T35S;5 = Pi(8Ti; — Ti58) Py = 0.
By Lemma 3(1) again, we have S;; = AP;. Therefore,
S:/\P11+(Aij+Bij)+0+/\Pj =Aij+Bij+/\[.
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Recalling that I ¢ &7, we have A = 0 and hence S = A;; + B;;. This completes
the proof. O
Lemma 7. ®(A;; + Bi;) = ®(Ai;) + (By;) fori=1,2.

Proof. Choose S = S11 + S12 + S21 + S22 € & such that

(4) ®(S) = (Aus) + B(Bis)-

Take j # i. For any Tj;, applying Lemma 2 to (4) we obtain ST}; — Tj;5 = 0.
Thus, by Lemma 3(3)-(4) we have

Sij =8;; =0 and Sj; = AF;

for some scalar A. Further, for any T;;, applying Lemmas 2, 6, it follows from
(4) that

®(ST; — T3;S) = ©(AuTi;) + B(BiTi;) = ®(AuTi; + BiiTij)-
Thus ST;; — T;;S = ATy + By Ti;. Hence
SiiTyj — ATy = SiiTi; — Ti;Sj5 = Pi(STy; — Ti;8) Py = (Aii + Bii) Ty,
from which we get S;; = A;; + B;; + AP; by Lemma 3(1). So
S =(Aii+ Bii+ AP;)) + 0+ 0+ AP; = Ay + By + Al
Since I ¢ «/, we have A =0 and S = A;; + By;, as desired. O
Lemma 8. ®(A;; + Az) = ®(A11) + P(A22).
Proof. Choose S = S11 + S12 + S21 + S22 € & such that
(5) ®(S) = ®(An1) + ®(Az).

For any T“, by Lemma 2 we get ST]I _TIIS = AHT]] —T“Au j which implies
T“Syz = SZITII =0. So 512 = 521 =0. A]SO, we have

T11(S11 — A11) = (S11 — Au1)Tn

and hence there exists a scalar A such that S;; = Ay; + AP;.
For any 712, applying Lemmas 2, 6, we obtain from (5) that

O(ST12 — T12S) = (A1 Tiz — Ti2A11) + @(AgeTi2 — Ti2A22)
= (A1 T2) + P(—T12A22) = ®(A11 T2 — Ti2A22).
It follows that STyo — T12S = A11T12 — T12A2. Hence
S11T12 — T12S22 = A11Th2 — Th2As,

in which putting A;; + AP; for Sy1, we have Sy, = Ags + AP, by Lemma 3(1).
So

5= (All +)\P1)+0+0+(A22+/\P2) = Ay + A + M.
Then S = Ay + Az since I ¢ &7, completing the proof. O

Lemma 9. ‘I)(Au + A21) = ‘I’(Alg) + q)(AQI).
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Proof. Choose S = S11 + S12 + S21 + S22 € & such that

(6) ?(S) = ®(As2) + (A1)
For any Ty2, by Lemma 2 one has
(7 STip — T12S = AT12 — T124A2.

Multiplying this equality by P; from the right, we get 77252, = T12A2,, which
implies Sy; = Ag;. With the same discussion for T5;, we can get Sjo = Aj».
For any 711, by Lemma 2 we get from (6)

(I)(STH — TuS) = <I>(—T11A12) -+ @(Ale”).
Moreover, for any 75y, applying Lemma 2 to the above equality, we have
T118Ts1 4 To1(SThy — T11S) = T11A12To — To1T11 Aj.

Multiplying this equality by P; from the right and noting that S;j» = A, we
get Tzl(ST“ — T“S)Pl = 0. Then 511711 = T11511, and so S;; = AP, for
some scalar A\. Also, observing that S11712 — T12522 = 0 from (7), we have
Soo = APs. So S = A1a + Aoy + AI. Hence S = Ao + Ay, since 1 ¢ . O

Lemma 10. ®(A;; + Aj2 + A21) = ©(A11) + ®(Ag2) + D(A21).
Proof. Let S = 511 + S12 + S21 + S22 € & such that
®(S) = ®(A1n1) + 2(A12) + (A21).

Then by Lemmas 4, 9, we have that

(8) O(S) = ®(An1 + Arz) + (An),

(9) ©(S) = (A1 + A21) + ®(Ar2),
(10) ®(S) = ®(An) + 2(A12 + Azn).
For any T5;, by Lemma 2 we get

(11) 8T — TS = AT — To1(Anr + Ar2)

from (8). Multiplying this equality by P; from the left, we get S12T2; = A127%),
and s0 Sjg = Ajz. Similarly, one has So; = Ap; from (9). Further, for any 75,
applying Lemma 2 to (10), we obtain
STy — TS = A13To2 — To2As1.
Multiplying this equality by P, from both sides, we see that SooT — 192599 =
0. It follows that there exists a scalar A such that Sop = AP>. Also, multiplying
(11) by P, from the left and by P; from the right respectively, we get
S22T51 — T21511 = —T1 Anr.

So S1; = Ay + AP;. Thus S = Ay + Ao + Az + Al and consequently,
S = Ay + Ajp + Ay, The proof is complete. O

Lemma 11. @(A“ +A12 +A21 +A22) = @(A]]) +‘I>(A12) +‘I)(A2] ) +‘I’(Azz)
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Proof. Suppose that S = Sy + Si2 + S21 + S22 € & are such that
D(S) = ®(A11) + P(Ag2) + (Ag;) + P(A22).
Then by the Lemma 10, we can write
(12) D(S) = P(A11 + A1z + Azy) + P(A22).
For any T7;, by Lemma 2 we see that
STy — TS = (A + A21)Ti — T (A + Arz).

By multiplying this equality by P» from the left and the right respectively, it
is easily seen that Sp; = Ag; and S12 = Ajp. Also, multiplying this equality
by P; from both sides, we can get (S11 — A11)T11 = T11(S11 — A11). It follows
that there exists a scalar A such that S;; = A1 + APy

For any T',, applying Lemma 2 to (12), we get

O(STi2 — T12S) = ®(A11Ti2 + A21Tiz — Ti2A21) + ®(—T12A22).

Again, for any 71,, by Lemmas 2, 4 and 6, we obtain from the above equality
that
O(~T128T11 — T11S8T12 + T11T12S)
= O(=T12421T11 — T11A11The + T11T12A21) + Y(T11T12A22)
= @(T11T12A21 — T12A21T11) + ®(—T11A11Th2) + @(T11T12A22)
= &(T11T12421 — Th2A21T11) + ¥(T11Ti2A22 — Th1 A1 The)
= ®(T11 112421 — T12 A1 Th1 + TiTi2A22 — T A Tha).

It follows that

1111128 — T128T1 — T115Th2
= T T12A2 — T12A21 T + T11T12A2 — T11 A The,

in which multiplying by P from the right and making use of S1; = Ay + APy,
we get Sop = Az + AP,. Hence S = Ay + Ajg + Aoy + Ao + M. So S =
Ajy + Ao + Az + Agp because of I ¢ &7, completing the proof. O

Proof of Theorem 1. Let A, B € &/. By writing A = A1+ Ao+ Az + A and
B = By + Bia + Bay + Bay, then it is easily seen that ®(A+ B) = ®(A) + d(D)
making use of Lemmas 6, 7 and 11. We are done. O

Theorem 1 has the following obvious corollary.

Corollary 1. Let % be a real or complex Hilbert space with dim # = oo,
and & C B(A) be either the ideal of all finite Tank operators or the ideal of
all compact operators. Then every bijective Lie map from & onto an arbitrary
algebra is additive.
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We shall conclude by considering the case that &/ contains the identity
operator I in Theorem 1. In this case, define the map @ : &/ — & by

BUA 24, ifAeFI,
(4) = { A, otherwise,

where F denotes the real or complex field. Then

(1) @ is bijective;

(2) @ is not additive;

(3) @ is a Lie map.

In fact, (1) and (2) are obvious. Let us prove that (3). Suppose A, B € «/.
We distinguish two cases.

Case 1. At least one of A, B is in FI. Then clearly, AB — BA =0 and

®(AB — BA) = 0= 9(A)®(B) — ®(B)P(A).
Case 2. Both A and B are not in FI. If AB — BA ¢ FI, then
$(A)®(B) — ®(B)P(A) = AB — BA = P(AB — BA).

Suppose now that AB — BA = Al for some A € F. We then have o(AB) =
A+ a(BA), where o(-) denotes the spectrum of an operator. It is well known
that o(AB) U {0} = o(BA) U {0}. This leads to A = 0 and hence

®(AB — BA) =0 = AB — BA = 3(A)®(B) — ®(B)®(A).

So @ is a Lie map.
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