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Abstract

As ATM system has become more congested with proliferated demands, and preferred trajectories own higher priorities than before,
it’s necessary to develop integrated metrics for daily operation. To gain insight of the traffic orderly status, the paper proposes a multi-
dimensional complexity metric focusing on the unsymmetrical effects imposed by the inter-relationship emerged among the multi-aircraft
pair-wise. The proximity effects on the individual aircraft based on the single-aircraft and multi-aircraft pair-wise are modeled and the
difference between them inspires us to present the synchronization structure of the traffic considering the traffic patterns in controllers’
minds. Then a new metric for traffic complexity is set up and initially validated under typical static traffic situations. We find it’s good for
revealing the availability of shady airspace, so two kinds of re-route strategies with corresponding simulation scenarios are discussed. It’s
casy to excavate the potential airspace capacity with the metric and both the heading and the clearance of the interval period adjusting
strategies can be found maintaining acceptable complexity level as well, which implies the application field of the new metric for future
dynamic ASM and ATFM.

Keywords  air traffic control, complex systems, air traffic pattern; airspace capacity management, re-route strategy

involve space-time information concerning all the
individual aircraft. Metric modeling should well deal
with reduction of descriptive dimensions while
maintaining enough information for decision making.
This section introduces the approach to combine the
space and time dimensions into one considering the
proximity effects on the individual aircraft based on the
single-aircraft and multi-aircraft pair-wise.

Aircraft > s ground speed and position are
undoubtedly the intrinsic attributes for facilitating direct
observation, and are most concise representation of the
time and space dimensions of the traffic pattern at any
period. Because no conflict could be beard under any
circumstances, and the minimum separation criterion
should be maintained, degree of urgency for the
operational staff to deal with the traffic could be
reflected in some sense by the proximity level of an
aircraft pair-wise. Towards a single-aircraft pair-wise,
the relative distance can be defined as D; , and the
relative speed can be defined as V;, which are the
simplest relationship of two aircraft. D; reflects instant
spatial occupancy extent of two aircraft, and V; reflects
the time duration for the aircraft to be safely separated.
Both of them characterize the most details of the

1. Introduction

Airspace means nothing itself without air traffic in
some sense and the attributes of the traffic can be used
measuring airspace performance. Metrics for traffic
complexity become the base of capacity and trajectory
management and some of them have been validated. G.
B. Chatterji and B. Sridhar defined a metric by neural
network method and proved its suitability for high
density airspace™, D. Delahaye, S. Puechmorel, et al.
investigated some metrics based on intrinsic parameters
of aircraft, considered the flow structure and captured
its disorder degree in the organization of 4D
trajectories’” *1. M. A. Ishutkina and E. Feron
introduced a linear programming solver to find the
smooth vector field satisfying aircraft performance
constraint to analyze the relationship between airspace
and its traffic*7. K. Lee investigated airspace responses
towards traffic  disturbances through sketching
complexity maps™. These metrics are macro-level and
neglect the heterogeneity of the traffic for TBO
concepts. So the paper proposes a metric from a middle-
level viewpoint, validates its effectiveness for airspace
performance characterization.

2. New Metric for Air Traffic Complexity proximity status of the aircralt pair-wise. To reduce the
2.1 Descriptive dimensions reduction descriptive dimensions of air traffic, considering the
The complexity ofthe air traffic significantly common danger consciousness, we combine D; and V;

emerges [rom the patterns combinatorial blast of the
relationships among aircraflt. Those relationships mainly

*  Corresponding author. E-mail address: wskkdxy(@ 126. com
Foundation item:National ATM Scientific Research Program of China (GKG200802006)
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factors for each aircraft pair-wise to set up PEj
representing proximity effects.

D,, is the minimum separation criterion, and no
violation can be made. Therefore the D; of an aircraft
pair-wise is critical for traffic situation presentation. We
consider the proximity effects caused by D; can be
expressed as an inverse ratio to D,,. However, there
exists a threshold which defines a specilic relative
distance with little effects on both aircrafts in a pair-
wise. So those D, below the median value of all D, for
aircraft 7 are useless and neglected in the data process. (
D;, V; ) is inner product of D; and V;;. (D;, V;)/ |
D; | is the projection of the vector V; on the vector D;.
The effects of V; are to emphasize those effects imposed
by the D,;. We consider proximity effects caused by V;
as the direct ratio to that of the maximum V; for all
aircraft z. and those V; below the average value of all V;;
are neglected either. Then, PEj is the sum-up of those
effects by V;; and D, discussed above. The principle is
that the further two aircraft are apart, the smaller
effects they will make on each other, and the faster two
aircraft approach, the more urgent the CD&R should be
taken. PEj is to reduce the descriptive dimensions for a
single-aircraft pair-wise and synthesizes the time-space
traffic factors into a micro-level situation indicator.
However, in real daily operation, the decision maker
onboard or on the ground focuses mostly on the
allocation in interactions among aircraft, and the local
traffic has the most significant impacts on various
decisions making. So we consider the influences towards
the individual aircraft from its surrounding traffic are
more important than those influences from the traffic far
away. For an aircraft, another aircraft possessing the
most proximity effects have the maximum correlation
with it, and producing the maximum occupation
tendency upon it. So the influences of such correlation
decrease along with the reduction of the proximity
elfects. We define the weight of each PE} for aircraft i
as follows:

—FE W,
max(PE*) M

In formula (1), ¢ is an adjusting parameter, and M
is a predefined constant parameter. Then we define PE;
with W!*  considering distributed decision making
preference and PE; can be expressed as below:

PE,= PE* . W™ 2
2.2 Asymmetric information caused disorder

As a status indicator of the minimum component of
air traffic, PE}; emphasizes the absolute impacts imposed
by a couple of aircraft each other. Therefore, the
relationship matrix composed of PEj is symmetric,
which means the information shared between the aircraft
is no difference in each aircraft’ s decision making
process. However, PE; emphasizes the
proximity effects towards one aircraft by the other one

0= e=<C1l (1)

relative

due to multi-aircraft pair-wise situation and information
becomes different for each aircraft of a pair-wise because
the focus scope is refined respectively as the traffic
descriptive dimensions are further reduced. Wi* in fact
represents the degree of the available information for an
aircraflt according to its local traffic patterns. Hence the
relationship matrix composed of W[* is asymmetric,
which reflects the distributed structure of the space-time
information of the overlapped local traffic situations for
various individual aircraft. WI* is suitable for hybrid
operational environment, which is common as decision
makers in the same system have limited cognitive
resource and control assets simultaneously.

W'E differentiate the value of the same proximity
information for two aircraft in an aircraft pair-wise. The
degree of such differentiation can be expressed by the
standard deviation of W}* and W}* and we use it, namely
S, as the indicator of the skewness of mutual traffic
information of an aircraft pair-wise. The larger S jis,
the more difference the same PE jis regarded in the local
decision making, and the more relationship asymmetry
caused by different overlapped traffic situations involving
different traffic structures. Therefore, S ;jnot only sets
up a local information distribution map, but also
presents the disorder degree of the micro-level air traffic
in a sense of information usage. That is to say, il the
same information takes similarly important effects in the
decision making, the degree of the cooperation among
stakeholder will be easier, or else the evolution of the
traffic situations will be more difficult to predict and
control, and leads to chaos more easily. Such
uncertainties will cause the asynchronism and emergent
complexity of the air traffic.

2.3 Synthesized complexity metric

To build up a synthesized indicator reflecting the
aircraft  pair-wise based on information
distribution bifurcation, we define G as the median of all
the S jto reflect synchronization status of the air traffic.

nexus

G is not defined as the maximum of the S ; because we
aim at middle-level metric modeling excluding extreme
situation and G is not defined as the average of the S
either because average value may shield
asymmetry, which is exactly the detail the metric should
presents in focus. For the same reason, the synthesized
indicator reflecting the aircraft pair-wise nexus entirely
on the base of proximity effects is defined as the median
of all the PE ;, namely P, while PE } is the maximum
value of PE § because the aircralt j involved is most
critical in CD&R for operation safety. With the
indicators set up above, we define the synthesized
complexity metric asC= G » P.

3. Initial Validation-Static Traffic Situations
4 typical static traffic situations commonly used in

salient

the complexity research are shown as Fig. 1, and the
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speed of all aircraft is set 420 knot. The complexity
values are 2. 7071(2. 7071, 1), 1.2929(1. 2929, 1), 1.
9386 (2. 25, 0. 8616), and 2. 1464 (2. 1464, 1)
respectively. Two values in the parenthesis are P and
G . Because the situation 3 consists of divergent and
convergent aircraft simultaneously, its G is lower than
other 3 situations, which are totally symmetric, and its
P is greater than situation 2 & 4. Situation 2 only
consists of 4 divergent aircraft with lowest proximity
effects, so it has the minimum complexity value.
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Fig. 1 Static traffic situations 1 - 4

Based on the situation 1, we add an additional
aircraft at specific position of different distances far [rom
the focused area. As the new aircraft locates at
coordinate (19, 19) with heading 180 deg, the
complexity value decreases from 2. 707 1 to 1.215 1. As
the aircraft withdraws along the diagonal line towards
north-east with heading unchanged, the complexity
values non-linearly decrease gradually to a specific level
1. 075 3. Extra aircraft confirms more available airspace
outside the focused airspace used to exist, expanding the
current focused area to a larger space with relative
smaller density. So the complexity level of situation
with additional aircraft is lower than that of situation 1
with 4 A/C counts. And the specific locations with
complexity values 1. 075 3 outside the focused airspace
make little effects on it, which separate the traffic into
two parts. The boundary formed by these locations
reflects the objective behavior as the reaction of the
focused airspace to the outside traffic situations. Radical
behavior would expand the scope of the original focused
airspace to hold new coming traffic, combine it with
existing traffic flow and renew structure of the traffic
situation inside it smoothly, which results in the
increase of the capacity of available airspace. And
passive behavior concerns to traffic conflicts. If variance
in traffic causes sharp rise in complexity level, traffic
structure in the original focused airspace would place a
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significant negative coupling with the new traffic to
make the situation alienation, and the extension of the
original focused airspace to new one will make it more
difficult to re-arrange the traffic and re-configure the
airspace structure. The difficulty implies conflict
reactions of the original focused airspace to the adjusting
actions, such as imposing stringent restrictions to the
downstream sector to reduce airspace usage flexibility.
StaticSituations  preliminarily  validates  the
effectiveness of the new metric in the middle-level
decision making. It’ s quite fit for sketching the
structure and organization of the traffic in all situations,
which are emphasized in real operation and regarded as
elemental attributes of airspace system. Therefore, the
new metric is quite meaningful for [urther exploration
towards the characterization of airspace performance.

4, Further Validation— Re-route Cases

We set up a rectangle sectorwith 2 convergent
routes. The entries of 2 routes are located at points (0,
70) and (0, 30). The convergent point is located at the
point (30, 50) and the exit of 2 routes is at the point
(50, 50). Ground speed is set 420 knot for all the
aircraft, Input streams of 2 routes are separated with the
clearance of the interval period of 15 time frames and
200 aircraft are set to fly over each route. Assumes 100
aircraft of the adjacent sector with the clearance of the
interval period of 15 time frames should re-route and
find new route from (0, 0) to the right edge of the
sector at the 300 time {rame,

As the exit point of the re-route path is at (50, 1),
the values of aircraft counts and complexity metric are
recorded shown in Fig. 2. It’s interesting the complexity
level descends when the re-route aircraft in the sector
simultaneously increase to 4 or 6 because the new traffic
flow gradually expands the range of focused airspace
filling blank area with no complexity factors and make
the average level of the traffic complexity drop a little.
Such drop obviously forms a concave in complexity
values between time f[rames 300 and 1 500, which
implies the fact that original airspace structure owns
attractive effects on the surrounding traffic. If we can fill
the groove by adjusting the re-route clearance of the
interval period or the re-route heading, more capacity
might be excavated for demands of adjacent sectors, and
airspace performance could be sketched more accurately
in such situations,

2 common strategies setting up the available re-
route path are to adjust the clearance of the interval
period and the entry/exit position. We firstly set the
initial import time of re-route aircraft with heading 0 deg
at 300 time frames and the clearance of the interval
period as 15 time frames. We gradually change the
reroute entry/exit positions until the complexity concave
of the original focused airspace is filled up. As re-route
entry/exit positions reach (0, 23) & (50, 45), the
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complexity curve is stable and almost in line with that of
the original airspace structure, shown as Fig. 3 (b). So
we consider the points (0, 23)/ (50, 45) as critical
entry/exit positions. Those points different from such
position own less or greater complexity values than that
of the original complexity curve, and 2 of them are
shown as Fig. 3 (a) & (o).
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Fig. 2 Aircraft counts , vs. complexity metric

We further discuss the strategy of adjusting the
clearance of the interval period. As the clearance of the
interval period decreases gradually, the peak values of
the complexity metric as to the re-route traffic situation
have a monotone increasing trend. Assumes the re-route
entry/exit positions are set (0, 0) &. (50, 1), as the
clearance of the interval period gradually reduces less
than 12, the concave obviously fills up the complexity
concave, shown as Fig. 4. So the clearance of the
interval period also has a critical value. The complexity
level of the original blank area soars and exceeds the
effects of the traffic in original focused airspace as the re-
route clearance of the interval period being much
smaller, which results in the rush of the complexity of
the overall airspace. Hence the re-route flow may
disrupt the original traffic structure and the sharp rise in
complexity indicates that the sector would exclude the
corresponding re-route flow.

5. Conclusion

Amulti-dimensional metric for air traffic complexity
is modeled for synthesizing space-time attributes of
aircraft, reducing descriptive dimensions of the traffic,
characterizing information distribution based decision
making mode. Its application solving re-route problem is
discussed and the critical adjusting strategies of the
heading and the clearance of the interval period are
obtained, which validate the effectiveness of the new
metric for the decision making tools development for the
future air traffic management concepts.
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Robust Optimization of Aircraft Arrival and
Departure Flow Allocation Based on Dynamic Capacity

YANG Shangwen, HU Minghua
(College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: To optimize the allocation of aircraft arrival and departure flow under dynamic capacity of
airports and fixes, an absolute robust optimization model, a deviation robust optimization model, and a
relative robust optimization model were built, where the objective function is to minimize the total cost
of delayed flights. Then, a solution process based on predatory search algorithm was developed to solve
the robust optimization problems. A case study regarding the operation of one of Chinese airports was
performed to verify the models. The simulation results show that the robust optimal solutions produced
from these models could effectively avoid risks on the basis of different decision preferences in actual
operations; compared with the optimal solution under the capacity of terminal area with common
conditions, the strategy of deviation robust optimization could reduce the delay cost by 8.2% , and the
strategy of relative robust optimization could reduce the delay cost by 7.8%.

Key words: air traffic management; flow allocation; robust optimization; predatory search algorithm;
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AEXE. XHERSFEBNALEERMIE B: W=8,LEVEL_NUM =16, LOCAL_LEVEL =2,
RSB EHE U TSR, FHit,  GLOBAL_LEVEL =14, COUNTER_MAX = 120. i3t
FELSFENHRRE, BIFRRENBEXEMOAFR  ERBRECER10] FriR F B E. iHHES X
W, FREFEERTOMBERRAERATUERZ RENENEREEAR RESEEABAENE

(R B 43 PO SR s, BEIR SR R 5. B, WK 3 ~5.
N R RE PR T AL R BT, S5
F1 THZFEER
Tab.1 Air traffic demand '
HGMBETRR BHMHERR
B B2 : :
har e o BEY ORE aw
14.00 ~14.15 5 3 8 1 4 5
14.15 ~14.;30 2 8 10 4 2 6
14.30 ~ 14 .45 3 6 9 3 1 4
14.45 ~15.00 ) 1 6 3 3 6
15.00 ~15:15 2 3 5 1 2 3
15:15 ~15.30 4 0 4 3 2 5
15:30 ~15:45 4 4 8 3 4 7
15.45 ~16.00 -+ 3 & 1 1 2
Bt 29 28 57 19 19 38
F2 HEFRFAXE
Tab.2 Forecasting interval of dynamic capacity 22}
BB #HHEMR 1 #HGEAR2 BHEMR] BHEMR2
14.00 ~ 14:15 [6,9] [6,9] [6,9] [6,9] [13,16]
14.:15 ~14.30 [6,9] [6,9] [6,9] [6,9] [13,16]
14:30 ~ 14.45 [3,6] [3,6] [4,7] [4,7] [12,16]
1445 ~15.00 [2,4] [3,6] [4,7] [3,6] [10,13]
15.00 ~15:15 [2,4] [2,4] [2,4] [2,4] [7,10]
15:15 ~15:30 [2,4] [2,4] [2,4] [2,4] [7,10]
15.:30 ~15.45 [5,8] [5.8] [5,8] [5,8] [9,12]
15.45 ~16 ;00 [6,9] [6,9] [6,9] [6,9] [13,16]
*®3 SAXNEERALER
Tab.3 Strategy of absolute robust optimization
BTN &S AT BRI
WE REE IR ap s N WEE g
14.00 ~14;15 5 3 8 0.0 1 4 5 0.0
14.15 ~14.30 2 6 8 68.7 4 1 5 28.7
14.30 ~ 14 .45 3 3 6 204.3 3 2 5 0.0
14.45 ~15:00 2 3 5 243. 1 2 3 S5 27.2
15.00 ~15:15 2 2 4 317.8 2 1 3 42.5
15:15 ~15:30 2 2 4 341.6 1 2 3 67.3
15:30 ~15.45 5 4 9 309.5 0 0 0 158.6
15:45 ~16.00 6 5 11 84.6 1 1 2 139.4
Bt 27 28 55 1494.9 14 14 28 463.7
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HE P ABEREENHREREEREEE
R TR REMRA BORRE. SRR R R AR
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F540.8, ERHEENR0.01,5 FFERTREBHM
R TR ) 82, 47 s; R MR BIER AT
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FiC SR s B vt SR B N SR

R4 RESERMERR

Tab.4  Strategy of deviation robust optimization

PR & 5T B 25 B

ME . BER AR gm ope 0T WEE g p
14.00 ~14:15 5 3 8 0.0 1 4 5 0.0
14:15 ~14.30 2 7 9 35.2 4 1 5 28.7
14.30 ~14.45 3 5 8 132.7 3 2 5 0.0
14:45 ~15:00 3 3 6 118.5 2 3 5 272
15:00 ~15:15 3 3 6 64.9 2 1 3 42.5
15:15 ~15.30 3 0 3 126.2 2 3 5 22.1
15:30 ~15.45 5 B 9 62.1 1 0 1 151.3
15:45 ~16:00 5 3 8 0.0 3 3 6 76.9

Bit 29 28 57 539.6 18 17 35 348.7

®5 HEXNRERMARE
Tab.5 Strategy of relative robust optimization
Prin/)i BRI B Gy B RS A

B REE SR gy pey O TR gm PG
1400 ~ 1415 5 3 8 0.0 1 4 5 0.0
14.15 ~14.30 2 7 9 35.2 4 1 S 28.7
14.30 ~ 14 .45 3 5 8 132.7 3 2 S 0.0
14:45 ~15.:00 3 3 6 118.5 2 3 5 272
15:00 ~15:15 3 2 ] 133.4 2 1 3 42.5
15:15 ~15:30 3 1 4 130.7 1 3 4 54.8
15.:30 ~15.45 5 4 9 62.1 1 0 1 177.6
15:45 ~16:00 4 B 7 0.0 3 E 7 76.9

Bit 28 29 57 612.6 17 18 35 407.7

5 & it
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BN RS PRRERARBRAREEE
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RERBEENEMRFER, 25115 BB 88K
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To estimate air traffic longitudinal conflict probability influenced by human factors, an analytic model
considering the reaction time of controllers is proposed. In the model, the decelerating process of two
close flights is described, and the reaction time of controllers is considered a stochastic variable. Then
one hundred data of the controller reaction time are collected and analysed. Maximum likelihood esti-

mate is used for parameter estimation. The Anderson-Darling Goodness of Fit test is used for significance
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shown.

test. The results show that the reaction time of controllers fits lognormal distribution at levels of signif-
icance 0.05, 0.025, 0.01 and 0.005 respectively. Case study is then performed to certify the rationality of
the model, and the impact of the controller reaction time on air traffic longitudinal conflict probability is

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

For the application of satellite-based CNS (Communication Nav-
igation Surveillance) and the improvement of aircraft performance,
air traffic management is more highly human-dependent for its
safety. Human behaviour plays a key role in air traffic management
safety. Previous work on air traffic risk assessment, including origi-
nal Reich model (Reich, 1966) and some typical examples such as
stochastic model (Bakker and Blom, 1993) and EVENT model
(Brooker, 2008), mainly focused on conflict or collision risks in lon-
gitudinal orientation, lateral orientation and vertical orientation
caused by system errors, navigation errors and weather factors.
There are also some achievements considering human factors in
air traffic risk assessment. DNV (1997) estimated the safe spacing
of P-RNAV parallel routes taking ATC intervention into account.
Brooker (2008) studied spacing safety taking account of human
factors and non-human factors through accident analysis, and
demonstrated that collision risks caused by human factors ac-
counted for the proportion of about 85%. However, literatures on
quantified human behaviour in air traffic risk assessment are still
rare.

As one of the main aspects in human behaviour, human error is
a major contributor to air traffic management incidents, with some
reviewers suggesting that human error contribution is in the order
of 90% or more (Isaac et al., 2002). Since the probability of the
occurrence of the errors is small, the probability distribution is dif-

* Corresponding author. Tel.: +86 025 84896232.
E-mail address: swyang_08@yahoo.cn (S.-w. Yang).

0925-7535/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.55¢i.2010.03.016

ficult to formulate in a model. As Brooker (2008) say, it is inher-
ently difficult to produce estimation of event frequency for
infrequent occurrences. Although it is difficult to model the errors
or the reliability of controllers, Human Reliability Assessment
(HRA) in air traffic management has been carried out (Isaac et al.,
2002). Kirwan et al. (2008) collected Human Error Probabilities
(HEPs) via analysing the results of a real-time simulation involving
controllers and pilots with a focus on communication errors, and
discussed options and potential ways forward for the development
of a full HRA capacity in air traffic management. Nevertheless, the
real-time air traffic risk is difficult to assess according to the errors
of controllers. The detailed tasks to be carried out by controllers
during detection of air traffic conflict and separation loss has been
split up into tasks performed by the perceptual, cognitive and mo-
tor processors (Mosquera-Benitez et al., 2009). Mosquera-Benitez
et al. (2009) estimated the collision probability based on controller
reaction time for potential conflicts in the scenario that a pair of
aircraft encounter in cross routes. Wicks et al. (2005) applied Oper-
ator Choice Model (OCM) to the research on the controller reaction
time for potential conflicts in cross routes, and demonstrated that
the distribution of controller reaction time followed the geometric
distribution.

In fact, the controller reaction time in the two literatures above
shows the controller performance in conflict detection in cross
routes. In this research, the controller reaction time concerned is
a kind of stimulus-response time, which has been an important
measure in the investigation of cognitive processes. We study the
probability distribution of the reaction time of controllers monitor-
ing the operations of air traffic, and propose a new model to
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estimate longitudinal conflict probability. It is expected that the
method would be useful as a reference for future theoretical re-
search. The remainder of the paper is organized as follows. In Sec-
tion 2, we formulate the model. In Section 3, we analyse the
probability distribution of the reaction time of controllers. In Sec-
tion 4, a case is studied, and we have a discussion. Finally, we con-
clude in Section 5.

2. Mathematical model

For the preferences of pilots and airlines or other reasons, air-
craft may change their speed. Especially in route, there is less
change in the altitude of a flight. When the leading aircraft decel-
erates, controllers need identify it and issue the instructions to the
following aircraft in the same route and direction to decelerate.
After certain delay which includes the time of identifying, thinking,
determination, and communication, the following aircraft begins
to decelerate. We define the time of identifying, thinking and
determination as the reaction time of controllers.

The assumptions used for the model are listed below:

(1) The change of the speed for each aircraft is allowed by
aircraft performance and ensures that the altitude of each
aircraft will not be changed.

(2) Pilots execute the instructions of controllers immediately.

(3) The decelerating process terminates when the two aircraft
reach the same final speed, and the final speed is known.

(4) Generally speaking, the time spent on decelerating in
fixed altitude is short enough to make us believe that the
deceleration of each aircraft is constant in the decelerating
process.

Fig. 1 shows the decelerating process. At the time when the
leading aircraft at the initial ground speed of v began to decelerate
with the deceleration a,, the separation between the leading air-
craft and the following aircraft was so. Then the following aircraft
began to decelerate with the deceleration ay after the controller
reaction time T and the communication time C, during which the
following aircraft had advanced for a distance of s; at the initial
ground speed of u. After having advanced for s;, the two aircraft
reaches the same ground speed z; when the following aircraft
has advanced for s3. Now the decelerating process terminates,
and the separation between them is s. The time spent by the lead-
ing aircraft on decelerating is t;, and the time spent by the follow-
ing aircraft on decelerating is ty.

Then we can formulate relative equations as follows:

s1=9(T+C) (1)
t=(v-u)/a (2)
ty = (vy — ) /a5 3)

following aircraft

50

uty —3aptf, +T+C >
S2 =9 Yty —%aft}-i— (4)
Vt(f[—tf—T—C), t+T+C<

u,t,—%a,t,’, t-T-C> ty
S3=4 Yyt —%a,t,z+ (5)
n(ty+T+C-t), 64-T-C<t

S=So+53—5 —52 (6)
Define the longitudinal separation minima as sep. The longitudinal
conflict probability p. can be written as follows:

p.=P{s < sep}
=P{T> [so+ (u,t, —%a,t,’) + vty —ty) - (v,t, —%a,tf) —sep]/(v, -7) —C}
=
1 5 1
- P{T < [so + (z/,t, - ia,t,) +v(tp—ty) — (v,t/ —Ea,t}) —sep]/(v, -v) —-C}

(7)
3. The probability distribution of controller reaction time

If sufficiently good models of system processes and human
observation, decision and response are available, then fast-time
computer simulation is also an option, and is normally much
cheaper than Human-In-The-Loop (HITL). However the literature
supports relatively few areas amenable to quantitative dynamic
models of human performance. Among these are visual and audi-
tory signal detection, continuous control, statistical decision-mak-
ing, and information processing. One particular issue that arises in
Next Generation Air Transportation Systems (NGATS) is the fact
that human decisions take time, and when humans are called upon
to evaluate complex situations that are unexpected and off-normal
the response time may be quite long. It is well known that the dis-
tribution of human response time fits a lognormal model quite
well (Sheridan, 2006). For example, Taoka (1989) applied an ana-
lytical model using the lognormal probability density function to
publish driver response time measurements, and close agreement
was obtained when this function was fitted to the measured re-
sponses of drivers to the onset of the amber signal as they ap-
proached signalized intersections. Van Der Linder (2006) found
that the lognormal model showed an excellent fit to the response
time of a person on a set of test items.

It is known that lognormal distribution has been widely applied
in many fields such as economics, biology, medicine, and materials.
Suppose that there is a sample, of which every datum is larger than
zero and could be very small positive value. When the number of
the sample is large enough, that is, fifty or more, it could be as-
sumed that the natural logarithm values of the sample fit or

leading aircraft
N
53

following aircraft

leading aircraft

following aircraft leading aircraft

\?_

B

$2 o 5

Fig. 1. The decelerating process of two close flights.
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approximate normal distribution, which means that the sample fits
or approximates lognormal distribution (D’ Agostino and Stephens,
1986). The probability density function of lognormal distribution is
then

1 (Inx=2)?
F(x)={ Ao e 4535, x>0 (®)
0, otherwise

where i =In (ﬁ;) & =1In (1 +§§) and y and o are respec-

tively defined as the mean and the variance of the sample.

We experiment on the air traffic control simulator designed
according to real operations of an air traffic control centre, and col-
lect one hundred data in different air traffic conditions including
peak hours and common periods. The raw data are listed in Table 1.

We use the common mathematical software Matlab6.5 to ana-
lyse and process the data of T. The histograms of T and InT are
shown in Figs. 2 and 3 respectively.

We can see that In T seems to fit or approximately fit normal
distribution. We assume that both T and In T fit the normal distri-
bution. Then the maximum likelihood estimates for these parame-
ters can be written as follows:

(10)
(11)

(12)

where n is the size of the sample.

Then we carry out significance test. Normal distribution and
lognormal distribution are best tested by use of the Anderson-Dar-
ling Goodness of Fit test. The A-D test is designed to detect differ-
ences in the tails between the fitted distribution and the data. The
A-D test statistic is a weighted average of the squared difference
between the Empirical Distribution and the fitted cumulative

Table 1
The reaction time of controllers.

25 T

2d 24 26

Fig. 2. The histogram of T.

07 075 08 08 09 09 1 105 11 115
Fig. 3. The histogram of InT.
distribution function. The A-D test is usually considered to be

more powerful than either the chi-square or Kolmogorov Smirnov
tests. The A-D test statistic is defined as

No. Reaction time (s) No. Reaction time (s) No. Reaction time (s) No. Reaction time (s) No. Reaction time (s)
1 2.34 21 213 41 234 61 235 81 2.10
2 2.62 22 2.19 42 2.16 62 2.15 82 1.97
3 2.29 23 2.09 43 227 63 2.04 83 2.09
4 2.38 24 233 44 247 64 212 84 242
5 240 25 2.04 45 234 65 2.79 85 2.79
6 225 26 2.23 46 2.04 66 2:25 86 2.58
7 235 27 2.10 47 224 67 2.76 87 225
8 2.49 28 2.09 48 2.04 68 235 88 235
9 292 29 2.75 49 234 69 2.05 89 2.26

10 2.08 30 2.58 50 2.28 70 213 90 244

11 2.89 11 223 51 1.98 71 2.38 91 2.06

12 241 32 243 52 2.78 72 2.06 92 251

13 253 33 224 53 238 73 2 93 225

14 2.49 34 2.06 54 234 74 2.11 94 2.53

15 249 35 1.98 55 2.10 75 2.03 95 241

16 2.35 36 2.18 56 2.11 76 2.18 96 2.63

17 2.64 37 1.92 57 235 77 213 97 224

18 2.18 38 2.29 58 2.20 78 2.44 98 2.50

19 225 39 261 59 244 79 234 99 235

20 212 40 233 60 253 80 2:17 100 2.18
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Fig. 4. The probability density function curve of T.

A =-n -% ;(21' —1)(INF(Y:) + In(1 = F(Yn.1-))) (13)

where F is the cumulative distribution function of the assumed dis-
tribution, and Y; are the ordered data (D’ Agostino and Stephens,
1986).

Then the A% of Tis 1.162, and the A% of In T is 0.738. For samples
of size n > 8, reject the null hypothesis of normality if A% exceeds
0.752, 0.873, 1.035, and 1.159 at levels of significance 0.05, 0.025,
0.01, and 0.005 respectively (D' Agostino and Stephens, 1986).
Therefore, it is shown that In T fits normal distribution at levels
of significance 0.05, 0.025, 0.01, and 0.005 respectively, that is, T
fits lognormal distribution.

The probability density function of T can be written as follows:

1 _ (InT-0.83)%
F(T):{me"p[ Etat], T>0 (14)
0, otherwise

The curve of the probability density function is shown in Fig. 4.
Furthermore, the interval estimates for A and ¢ are [0.816, 0.853]
and [0.0828, 0.1095] respectively at the level of significance 0.05.
The interval estimates at other significance levels are not listed
in detail.

4. Case study

To test how well the model may be applied in the real world, we
perform numerical tests based on the experiment condition men-
tioned above. We choose two close flights in FL 290. The leading
aircraft is B757-200 at a ground speed y of 455 knots, and the fol-
lowing aircraft is B737-300 at a ground speed vy of 471 knots. The
initial separation sp between them is 4.4 nm. The final ground
speed v, is 300 knots. According to aircraft performance manuals
and pilot experience, the decelerations of the two aircraft a; and
ay are 8 m/s® and 10 m/s? respectively. Although there may be
some errors in the values of the decelerations, the errors would
not affect the calculation of the conflict probability. As they are
both medium types, the longitudinal separation minima sep is
3 nm according to International Civil Aviation Organization (ICAO)
wake vortex separation minima. The voice communication time C
is estimated to be an average of 7 s (Cullen, 1999). Then we calcu-
late the longitudinal conflict probability p. according to Egs. (7)
and (14):
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Fig. 5. The relation between sp-sep and p..
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Due to the change of the speed and the decelerating time in
fixed altitude being confined, the differentials between s, and
s3 are small. We can find in the calculating process that the ini-
tial separation s, between the two aircraft and the ground speed
differentials between #z and », play an important role in the
estimation of longitudinal conflict probability. We can see from
Fig. 5 that p. approximates O infinitely with the increase of
So-sep.

The collision probability estimated in this method is smaller
than 10~'4, that is to say, it may not be appropriate to assess col-
lision risk in this method. Conflict probability and collision prob-
ability both reflect the safety of air traffic separation. Conflict
probability mainly focuses on real-time air traffic safety, and
collision probability mainly focuses on total air traffic safety.
Conflict probability is generally formulated in the functions of
time, and the research on conflict probability is devoted to pre-
dicting real-time conflict probability, analysing the workload of
controllers, and so on. The research on collision risk is devoted
to the safety of air traffic system and the possibility of reducing
the separation minima, and the data used in analyses originate
from the accumulation for years. The method proposed in this
paper could be applied to predicting real-time longitudinal con-
flict probability. As mentioned above, so-sep and 7~ play an
important role in the method. Although there is no criterion on
air traffic conflict risk, the method could be used to determine
the safe separation according to the condition of an air traffic
control center itself, including the air traffic situation and the
condition of controllers.

5. Conclusions

In view of the difficulty in modelling the errors or reliability of
controllers, we introduce the reaction time of controllers into esti-
mating longitudinal conflict probability and propose an analytic
model. After collecting and analysing the experiment data, we find
that the reaction time of controllers fits lognormal distribution
well. Then we apply the model to predicting the longitudinal con-
flict probability in real operations. The model provides a new way
to study air traffic risks influenced by human factors. Although




