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Article history: For a piezoelectric solid with an air-filled elliptic cavity, the two-dimensional problems of
Available online 3 July 2008 partial discharge inside the cavity are studied when the solid is subjected to combined
mechanical stress and electric field. Based on the law of Paschen, the influence of mechan-
Keywords: ical stress on partial discharge is discussed. It is shown from the obtained results that the
Eiez?(e'ec"ic ceramics applied mechanical stress can retard or enhance the occurrence of partial discharge, which
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is dependent on the signs of applied electric fields. It is also found that for a mathematical
crack (with zero initial width), partial discharge may not happen even when the signifi-
cantly high mechanical and electric loadings are applied within the range of practical
interest.

Partial discharge
Mechanical stress
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1. Introduction

When a dielectric solid containing an air-filled thin cavity is electrically loaded, the electric field inside the cavity may be
greatly enhanced in magnitude than the applied electric loading for the dielectric solids having higher dielectric constant
than air. When the induced electric field reaches a critical value, partial discharge (PD) of air may occur inside the cavity
[1]. In high-voltage insulation systems, the occurrence of PD is highly undesirable because PD makes the insulating materials
degrade rapidly both physically and chemically, and finally results in the breakdown of the dielectric and limits the lifetime
of an insulation system [2]. For this reason, a lengthy literature has been developed on the subject of PD. An excellent review
of the subject can be found in the work of Druyvesteyn and Penning [3] who summarized the important theoretical and
experimental contributions made before 1940. In recent decades, great progress was made on understanding cavity dis-
charges [4-10]. However, the pioneering works were mainly for the cases of PD in an isotropic dielectric solid under pure
electric loading. With increasingly wide applications of piezoelectric materials in smart materials structures, it is also essen-
tial to explore the PD of defects in piezoelectric solids. Electric filed strength inside defects is one of important factors causing
PD [1]. Different from the cases of dielectric solids, the mechanical stress can produce the high electric field inside thin de-
fects [11,12], and thus this work is focused on the study of the influence of mechanical stress on PD in a piezoelectric solid.

2. Description of the problem

Consider a transversely isotropic piezoelectric solid refereed to a Cartesian coordinate system x; — X, — x3. The solid is
polarized along the positive x, direction, and it is reduced by a long cylinder cavity. The cavity is oriented along the x5 axis
and whose cross section is an ellipse. We investigate a two-dimensional (2D) problem taking placing in the x; - x, plane that

* Tel.: +86 25 8489 6237; fax: +86 25 8489 1422.
E-mail address: cfgao@nuaa.edu.cn

0013-7944/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engfracmech.2008.06.022
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PLT

Fig. 1. Elliptic cavity in a piezoelectric solid under combined mechanical stress and electric field.

is subjected to uniform mechanical stress 05 and electric field E5, as shown in Fig. 1. Additionally, assume that the cavity is
filled with air.

In general, the constitutive equations of piezoelectric solids can be expressed as
c=cy-eE, D=ey+:E (1)

where o, v, E and D are stress, strain, electric fields and electric displacement vectors, respectively. ¢, e and ¢ stands for the
elastic, piezoelectric and dielectric constants, respectively.

For the present 2D problem, all field variables both in the solid and inside the cavity are functions of x; and x, only. The
components of stress fields and electric displacements can be obtained from

(011,012,013, D1 = =3, (012,022,023, D2)" = ¢, (2)

where u and ¢ are the generalized displacement function and stress function, respectively. The general solution for u and ¢
are [13]

u=Af(z) + Af(z), ¢ =Bf(Z)+Bf(Z) (3)

where A and B are two constant matrices, and f(z) is an unknown complex vector.
After f(z) is determined from the given boundary conditions, all field variables can be obtained. In the present work, we do

not deal with the detail about the solution of f(z), and only give the result of the electric field inside the cavity to discuss PD
inside it.

3. Electric field inside the cavity

For an elliptic cavity with arbitrary semi-axis a and b, the component of electric displacement D9 inside it can be
expressed as [12]

b(DY — &kE3) + eoHs205a/2 (4)
b + aep/eesr

where D3 is the electric displacement at infinity, ¢ is the dielectric constant of air, ¢er = —2/Ha44 > 0, and Hyz and Hyq are the
components of the matrix H defined as H = 2Re[iAB™'] .

According to constitutive Eq. (1), DI can be expressed through the electric field and strain at infinity. For the present
problem, it can be shown that D3° has the form

D3 - D§ =

> =& Ey (5)
where
8’{' = (i + Bn) (6)
Caa

Using Eqgs. (4) and (5), the resulting electric field inside the cavity is

M

b H

o_03_(+E)E -%op

§=—= S (7)
0 E Leff
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For an isotropic dielectric solid, one has &) = & = &m, and Eq. (7) becomes, under pure electric field, into [14]

b
Roatlps

b
ﬂ+rM

where gy is the dielectric constant of the solid.

Since Hs; > 0 in general cases, Eq. (7) shows that for a positive electric field E° (in the positive x; direction), the mechan-
ical stress o5 always reduces the electric field strength in the cavity. Especially, when the ratio of the applied mechanical
stress to the applied electric field satisfies the following condition:

o _2 (b & (8)
EXY " Hy \a  een
Eq. (8) results in zero electric field E. This means that PD may not happen under the specified loading condition.

On the other hand, for an applied negative electric load, the contributions from the mechanical and electric loading to E
are the same in sign. Thus, the magnitude of EJ inside the cavity becomes

E; = £ (9)

In this case, the mechanical stress enhances the electric field inside the cavity. It is also found from Eqgs. (7) and (9) that for
the above two cases, E‘z' may become very high in magnitude as the cavity becomes thin. When EJ is enhanced to a critical
value, PD may happen. Below we explore the effect of applied mechanical stress on PD.

4. Townsend discharge

In this work, we only study the Townsend-type discharge. For the Townsend-type discharge, the critical condition for PD
in the cavity can be written as,

E > E (10)

where Ej, is the breakdown electric field of PD.

For an elliptic cavity studied in the present work, it is shown from Eq. (4) that the electric field within the cavity is uni-
form everywhere before partial discharge, when the solid is subjected to the far-field mechanical/electric loading. In this
case, the Paschen law [1] is a good approximation to predict whether partial discharge happens or not, for the gas under uni-
form electric field. Based on the Paschen’s law, the breakdown field strength is a unique function of the pressure p and cavity
width d, and it can be determined experimentally. We use the result of Crichton et al. [4]:

Ey 672 KV
2= 2242436 (m) (11)

where d = 2b for a very thin cavity. It has been shown that for air at standard temperature (20 °C) and pressure (p = 1 bar),
the breakdown field strength calculated from Eq. (11) agrees well with experimental values.
Taking p = 1 bar, Eq. (11) can be rewritten as

E =%+2.436 (%) (12)

where d is expressed in cm.

The PZT-5H is selected as a model material. The matrices A and B in Eq. (3) can be calculated and then the matrix H can be
determined [15]. The final results are listed as follows:

Hp =321x10" m?/N, Hp =256x10%m?/C. Hs =-9.16 x 10’ Vm/C
ter =2.18x 1078, M =23x10°N/V® and & =8.85x 1072 N/V? (13)
For a cavity with a = 1 cm, using the above data, one has from Eq. (7), that
£ (d+2.1)EX—25.6 : 10%0% (1)
d+8x10

m
when an applied positive electric field E and a mechanical stress g3 are applied.
Substituting Eqs. (12) and (14) into Eq. (10) results in

(14)

(d+2.1)Er—25.6 x 10305 > (d+ 8 x 10‘4)(0.672/\/3+ 2.436) x 10° (15)
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Similarly, for an applied negative electric field, Eqgs. (9)-(11) leads to
(d+2.1)EF +25.6 x 10303 > (d+ 8 x 107*)(0.672/Vd + 2.436) x 10° (16)

Egs. (15) and (16) can be applied to predict if PD may happen. Shown in Fig. 2 is the variation of the magnitude of Eg inside
the cavity and the Paschen's curve E, as a function of the cavity width d. It can be found that the curve No. 1 has a cross point
with that of E, when a positive electric loading of E;” = 0.4 MV/m is only applied. This indicates that PD may happen under
the pure electric field. But, if a mechanical stress of 6 = 30 MPa is added, the electric field strength E (shown as the curve
No. 2) is always lower thanE,, and thus PD may not happen any more. On the other hand, when a negative electric field of
E>’ = 50 kV/m together with a mechanical stress of 3 = 30 MPa is applied, Fig. 3 shows that PD may happen, but it does not
happen if the mechanical load is removed. In a word, the applied mechanical stress may take the retarding or enhancing ef-
fects on the occurrence of PD, which is dependent on the directions of applied electric fields.

When the thin cavity degenerates into a mathematical crack (with zero initial width), the electric field inside the crack
approaches a limiting value E‘z’ = M EJ /&0 from Eq. (7) for the case of pure electric loading. However, it is shown from Eq. (12)
that E, is in proportion to d~'/? and goes to the infinity. This means that for the mathematical crack, it is difficult for PD to
happen under pure electric loading. When a uniform mechanical o5 is added, the crack opens to an elliptical cavity with
d = 2bo, where by stands for the crack opening calculated from [12]

10

1. E; =04MV/m,o; =0
2. E; =04MV/Im,o; =30 Mpa

0 : a : ‘
00 01 02 03 04 05 06 07 08 09 10

d (cm)

Fig. 2. Effect of mechanical stress together with an applied positive electric field on PD.
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1: E; =50KV /Im,0, =30MPa
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Fig. 3. Effect of mechanical stress together with an applied negative electric field on PD.
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2
d=%(sz—%ﬁ)a‘fa (17)

As an example, we take g3 = 100 MPa and the crack length a = 1cm. Using Eq. (15) with Eqgs. (13) and (17), we finally
obtain the needed positive electric loading for PD as E = 1.3 MV/m. The loading is beyond the strength limit of the mate-

rials. Thus, PD may not happen in a mathematical crack even when the significantly high mechanical and electric loadings
are applied within the range of practical interest.

5. Conclusions

We studied the influences of mechanical stress on PD in an air-filled elliptic cavity in a piezoelectric solid. It is found that
the mechanical stress may retard or enhance the occurrence of PD, which is dependent on the direction of the applied elec-
tric field. However, for a mathematical crack, PD may not happen even if a significantly high mechanical stress is applied.
Finally, it should be noted that for a given electric loading, one can control the occurrence of PD in a cavity through applying

a proper mechanical stress that satisfies the Eq. (8), because the mechanical stress can change the strength of electric fields
inside the cavity.
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ARTICLE INFO ABSTRACT

Article history: The 2D problem of a soft ferromagnetic solid with a finite crack under a uniform magnetic
Available online 1 July 2008 field has been studied based on the linear theory of Pao and Yeh. Especially, in this work,
the Maxwell stresses induced by the applied magnetic field are taken into account in the
Keywords: boundary conditions not only along the crack surfaces, but also at infinity. Based on these
Cracks boundary conditions, the related boundary-value problem is solved by using Muskhelish-
Soft ferromagnetic materials vili's complex variable method to obtain the complex potentials. Thus, it is found that the
Gilect of magnetic fields obtained complex potentials are constant, which indicates that both magnetic fields and
stress are uniform in the solid. This implies that if only a pure magnetic field is applied,

it has no effects on a crack in a soft ferromagnetic solid. To confirm this result, the same

boundary-value problem is solved by the integral transform technique, which shows the

same finding as that by using the complex variable method. This outcome is consistent

with available experimental data but different to previously published theoretical results.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Ferromagnetic materials have wide applications in transformers, generators, induction coils, electric motors, etc. There-
fore, magnetoelastic coupling problems in ferromagnetic materials have received growing interest in recent years. Pioneer-
ing studies on magnetoelastic theory include those of Dunkin and Eringen [1], Tiersten [2] and Brown [3]. Since these early
theories are nonlinear and complicated to use, a linearized version of Brown's theory was developed by Pao and Yeh [4] for a
soft ferromagnetic solid with a low level of hysteresis loop and a small remanent magnetization. Their contribution has en-
abled analytical results to be obtained for the boundary-value problems of magnetoelastic interaction. Clearly, different re-
sults will be obtained with different boundary conditions. Currently, there are two kinds of commonly used boundary
conditions: one considers the Maxwell stress in the boundary conditions along the crack surfaces, and the other does not.
Similar to what is done in piezoelectric materials, the first kind of boundary condition may be called a magnetically perme-
able model, but the second a magnetically impermeable model. With the magnetically permeable model, Shindo [5] was first
to study the linear magnetoelastic problem of a soft ferromagnetic elastic solid with a finite crack using Pao and Yeh's theory
and the integral transform technique. Further studies were extended to cases of different crack geometry and loading con-
figuration [6-10]. It was found that application of only a magnetic field could produce singular stresses near the crack tips.
Further, there is a critical magnetic field b. which is unrelated to crack length but which results in an infinite value of the
stress intensity factor [5], that is, elastic equilibrium is impossible. More recently, Liang et al. [11,12] developed a complex
potential method for 2D problems of cracks in a homogeneous and a dissimilar soft ferromagnetic solid, respectively, using
the permeable crack model. In contrast, Lin and Yeh [13], and Lin and Lin [ 14) adopted the impermeable crack model to study
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crack problems in soft ferromagnetic materials based on a simplified version of the linear theory of Pao and Yeh [4], which
neglects all magnetic quantities related to deformation. It was also found that an applied magnetic field could produce
singular stresses in the solid with a mathematical crack. In particular, Fil'shtinkskii [15] solved a plane problem in a soft
ferromagnetic medium containing some mathematical cuts in the initial state using a complex function method with the
impermeable crack model. He arrived at a similar conclusion that pure magnetic fields have effects on crack growth. He also
obtained a critical magnetic field b, at which elastic equilibrium is not possible. In summary, nearly all the available theo-
retical predictions in the literature show that a magnetic field can produce singular stresses in a soft ferromagnetic solid with
mathematical cracks, if they are magnetically permeable or not. Conversely, there are some experimental studies on the
effects of magnetic field on fracture toughness of soft ferromagnetic materials, and it was found that no measurable effect
occurred even for a magnetic field that exceeded 75 T [16,17], though the sample size was finite. Hence, there is an incon-
sistency between theoretical results and experimental observations on the magnetic field effect on a mathematical crack in a
soft ferromagnetic solid. In fact, when a soft ferromagnetic solid with cracks is exposed to air, the Maxwell stresses will be
induced not only on the crack faces, but also on the outside surface of the solid. This means that, not only on the crack faces
but also at infinity, the Maxwell stresses must be taken into account in the boundary conditions.

Motivated by this viewpoint, in this paper we re-visit a mode-I mathematical crack in a soft ferromagnetic solid to inves-
tigate the effects of applied magnetic fields on cracks. The paper is arranged as follows: in Section 2, basic equations are out-
lined according to Pao and Yeh's theory [4], where all magnetic quantities are divided into two parts: one corresponds to the
rigid body state and the other the perturbation state. Then, the solutions of magnetic fields for the rigid body state are given
in Section 3. Presented in Section 4 are the field expressions of elastic stresses and displacements for the perturbation state.
Explicit expressions of boundary conditions on the crack faces and at infinity are shown in Section 5. Solutions for complex
potentials of a crack under a pure magnetic field are derived, and explicit and closed-form results are obtained in Section 6.
In addition, the present crack problem is also solved based on the integral transform technique in Appendix B. Finally, dis-
cussions on the effects of magnetic fields on a crack are given in Section 7.

2. Basic equations

Consider an isotropic soft ferromagnetic solid. Pao and Yeh [4] developed a linear theory based on the assumption that all
magnetic quantities in a deformable solid can be divided into two parts: (a) those components in the rigid body state; and (b)

those components in the perturbation state. Thus, the components of magnetic-induction B, magnetization M, and magnetic
field strength H can be represented by

B=B)+b, Hi=H'+h, Mi=M’+m;, (i=1,2,3), (1)

where B}, H? and M? = yH? denote magnetic quantities in the ‘rigid’ un-deformed state; b, h; and m; = xh; are perturbation
terms standing for the contributions of elastic deformation to the magnetic quantities, and y is magnetic susceptibility.

(A) Rigid body state: B?, H? and M? can be determined only by solving the magneto-static boundary-value problems with
the following equations:

eHy; =0, BY)=0, (2)
where ey is permutation tensor and a comma means partial differentiation. Also, we have
B = Ho(H + M) = pto(1 + M} = piopt, HY = p, HY, (3)

and pq = popr, in which g is the absolute permeability of vacuum, and u, = (1 + x) is the relative magnetic permeability of
the solid.

Along the boundary of an un-deformed body with an outer normal n;, the boundary conditions are given by
efjknfl[”ko]] =0, nk[[Bg]l =0, (4)

where [ ] represents the discontinuity jump across the boundary.

(B) Perturbation state: Consider the case in which |Mfu,— il << |mi|, where u; is the displacement. The equilibrium equa-
tions become

ewhej =0, b;i=0, b= h, (5)
(o) o ©

where (t,-,- + t:}") is total stress tensor. t; and ¢} are magnetoelastic and Maxwell stress tensors, respectively, and they can be
expressed by

tj = au+%M?M2+%(M?mJ+MPm”* <

n
w

1 .
6y = i HH] = 5 oHgHRdy + py (Hihy + Hhi) — poHhidy. (8)
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In Eq. (7), g is the elastic stress tensor
Oij = Adjjliy + G(Uij + Uji), (9)

where §;; is Kronecker delta, and 4 and G are Lame constants.
Substituting Eqs. (7) and (8) into (6) leads to

ti + o (M?H}’_,. + M%h;; + m,—H}’J) =, (10)
On the traction-free boundary, the boundary conditions are [4]:

ei{ (] — Nmtimi[H1} = O, ni[b;] — Nimitm;[B}] = O, (11)

n,—[[t,-j+t{-}‘]] =], (12)

Below we first solve the magneto-static problem for the rigid body state based on the boundary condition of Eq. (4), and
then derive the solutions for the perturbation state using Eqs. (11) and (12).

3. Solution for rigid body state

Consider a 2D problem of a soft ferromagnetic solid with a single crack as shown in Fig. 1. We assume that the solid is only
subjected to a uniform magnetic loading B3 at infinity. Thus, Eq. (2) becomes

H, -HY, =0, (13a)
B, +B),=0. (13b)
If we let
H?z%» ngaa_q;;;,_ (14)
Then Eq. (13a) is automatically satisfied, and Egs. (3), (13b) and (14) lead to
Vg, =0, (15)
where V? = & 4 %2,
We define

¥o(X1,X2) = Re[Wp(2)], z=x; +ixa,

where Wy(z) is an analytical complex potential function, by using Egs. (14) and (3). It can be obtained that

H{ — iH = Wy(2), (16a)

BY —iB; = 1, Wy (2). (16b)
Hence, for this case, Eq. (4) gives

B = BY9, HO= HO® (17)

where the quantities with the superscripts “(e)” represent those inside the crack.
Neglecting the change of magnetic fields within the crack along the x,-direction, Eq. (17) is reduced to

BY'(x1) = BY (x1), HY (%) =HS (x1) (18)

which show that the crack behaves as a magnetically permeable slit.
Now, from Egs. (16) and (18), and using the single-valued condition of magnetic potential, we finally obtain

Wo(2) = —ﬁﬂ?- (19)

Pr1trs

2

A4

2a X
—»

Fig. 1. A crack in a soft ferromagnetic solid.
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Egs. (19) and (16) show that in the rigid body state, the magnetic fields in the medium are uniform. That is,

B=0, H!=0, B)=5B7, ngi, MY =0, Mgzxﬁl’-. (20)
Hy Hy
Inside the crack, however, the components of uniform magnetic fields are
B =0, H¥ =0 MY® =0 MY®*=0 BY =BF H= %2.0_ = ﬁ—;Hg. (21)

Indeed, for an infinite soft ferromagnetic solid with arbitrary cracks, it can be shown that the magnetic field in the solid is
always uniform and equal to the applied one at infinity. That is, the crack has no effect on the disturbance of magnetic fields
in the rigid body state.

4. Field expressions for perturbation state

For the perturbation state, field equations are also given in the form of complex potentials by Fil'shtinkskii [15]. However,
these equations were presented only for the magnetoelastic stresses ;. For comparison with purely elastic cases, here we
derive the field expressions for the elastic stress tensor oj;.

To do this, we have from Eq. (5):

hi2 = hyy =0, (22a)
b1+ b2 =0. (22b)
If we let
_ o _ %
hl_é}, h"_ay' (23)

Eq. (22a) is automatically satisfied, and Eq. (22b) yields
Vi =0 (24)

Similarly, we have

{ = Re[w(z)], (25a)
h] —ih; = W(Z), (25'3)
b] - lbz = [,l]W"(Z), (25C)
where w(z) is an analytical complex potential function. However, from Eq. (10), we have
B(Xr
Bisg +ina+ L hi2 =0, (26a)
Ky
B>
tias +taz + X2 hy5 = 0, (26b)
Hr
where t; is given by Eq. (7) in combination with Eqs. (20) and (21). Thus,
tih = 0n,
2 RO
[ =02+ X(B?z) * 215, hz,
u{)#r ur
B> h
tiz2 =101 =012 +M- (27)
By substituting Eq. (27) into Eq. (26), and noting from Eqs. (23) and (24), h; 2 = ho; and h,; + h,2 =0, we obtain
Ona+ 0122 + 2 xB; ha1 =0, (28a)
B’XJ
gy +- 0z 4 28 Ly = (28b)
Hy
Eq. (28) can be rewritten as [11]:
Ona+0n2+(=V,1) =0, (29a)

O121+0xn2+(-V2)=0, (29b)
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where
1By xBy
V=-2&2h,=-2 (5. (30)
T T
Now let
d*U ’U d*U
0'11——3;%"!'\/, 012=—m, 022=m+vu (31)

where U denotes a real stress function. Then, Eq. (29) is automatically satisfied.
In addition, for the plane stress problem, the displacement compatibility condition requires

V(o1 + 02) = —(1 + WV3(-V), (32)

where u is the Poisson ratio. (For plane strain, the corresponding solutions can be obtained from the present plane stress case
by replacing u and E with u/(1 — u) and E/(1 — u?), respectively.) With Egs. (30) and (24), we have

V(v 2K (v2g), o 33)
Thus, Eq. (32) becomes
V2(011 + 02) = 0. (34)
Inserting Eq. (31) into (34) and then using Eq. (33), we have
vViu=o. (35)
The general solution of Eq. (35) is [18]:
U = 2Relzp(2) + y(2)], (36)
where ¢(z) and /(z) are two complex functions. From Eq. (25b) we obtain
1 e
hy = —Z[W(Z) - W(2)]. (37a)
hy = %[W(z) + W@, (37b)
Putting Eq. (37a) into (30) gives
Vi %[W(z) — W(2)] = 2Re[c3W/ (2)], (38)
where
_ X8
C3 = !#r :
From Egs. (31), (36) and (38), we finally obtain
022 + 011 = 4Re[@'(z) + c3W'(2)], (39a)
Gy — 0171 + 2f012 = 2{2([3”(2) + l,[l“z)]. (39b)

Similarly, the displacements are given by (see Appendix A)

2G(uy + iup) = K(z) — z'(z) — Y(z) + Kc3w(z), (40)

where Kk = (3 — u)/(1 + u),k=2(1 — w)/(1 + ), G=E/2(1 + p) and E is Young's modulus.
From Eq. (39b) we have

O — 011 — 2i012 = 2(2¢"(2) + ¥/'(2)]. (41)
Thus, Eqgs. (41) and (39b) give

02 — 1012 = ¢'(2) + ¢'(2) + 2¢"(2) + ¥/ (2) + W (2) + C3W(2). (42)

Define a new function €2(z) such that

Qz) = §'(2) + 29" (2) + ¥ (2) + GW (2). (43)



