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Preface

The study of orthogonal polynomials of several variables goes back at
least as far as Hermite. There have been only a few books on the subject
since: Appell and de Fériet [1926] and Erdélyi et al. [1953]. Twenty-five
years have gone by since Koornwinder’s survey article [1975]. A number
of individuals who need techniques from this topic have approached us
and suggested (even asked) that we write a book accessible to a general
mathematical audience.

It is our goal to present the developments of very recent research to a
readership trained in classical analysis. We include applied mathemati-
cians and physicists, and even chemists and mathematical biologists, in
this category.

While there is some material about the general theory, the emphasis
is on classical types, by which we mean families of polynomials whose
weight functions are supported on standard domains such as the simplex
and the ball, or of Gaussian type, which satisfy differential-difference
equations, and for which fairly explicit formulae exist. The phrase ‘dif-
ference’ refers to operators associated to reflections in hyperplanes. The
most desirable situation is when there is a set of commuting self-adjoint
operators whose simultaneous eigenfunctions form an orthogonal basis
of polynomials. As will be seen, this is still an open area of research for
some families.

With the intention of making this book useful to a wide audience, for
both reference and instruction, we use familiar and standard notation
* for analysis on Euclidean space, and assume basic knowledge of Fourier
and functional analysis, matrix theory, and elementary group theory.
We have been influenced by the important books of Bailey [1935], Szeg6
[1975] and Lebedev [1972] in style and taste.

Here is an overview of the contents: Chapter 1 is a summary of the

xiii



xiv Preface

key one variable methods and definitions: gamma and beta functions,
the classical and related orthogonal polynomials and their structure con-
stants, hypergeometric and Lauricella series. The multi-variable analysis
begins in Chapter 2 with some examples of orthogonal polynomials and
spherical harmonics, and specific two variable examples such as Jacobi
polynomials on various domains and disc polynomials. There is a discus-
sion of the moment problem, general properties of orthogonal polynomi-
als of several variables and matrix three term recurrences in Chapter 3.
Coxeter groups are treated systematically in a self-contained way, in a
style suitable for the analyst, in Chapter 4 (knowledge of representation
theory is not necessary). The chapter goes on to introduce differential-
difference operators, the intertwining operator, and the analogue of the
exponential function, and concludes with the construction of invariant
differential operators. Chapter 5 is a presentation of h-harmonics, the
analogue of harmonic homogeneous polynomials associated with reflec-
tion groups; there are some examples for specific reflection groups as well
as the application to proving the isometric properties of the generalized
Fourier transform. This transform uses the analogue of the exponential
function. It contains the classical Hankel transform as a special case.
Chapter 6 is a detailed treatment of orthogonal polynomials on the sim-
plex, the ball, and of Hermite type. Then summability theorems for
expansions in terms of these polynomials are presented in Chapter 7;
the main method is Cesaro (C, §) summation, and there are precise re-
sults on which values of § give positive or bounded linear operators. The
nonsymmetric Jack polynomials appear in Chapter 8; this chapter con-
tains all necessary details for their derivation, formulae for norms, hook
length products, and computation of the structure constants. There
is a proof of the Macdonald-Mehta—Selberg integral formula. Finally
Chapter 9 shows how to use the nonsymmetric Jack polynomials to pro-
duce bases associated with the octahedral groups. This chapter has a
short discussion of how these polynomials and related operators are used
to solve the Schriodinger equations of the Calogero-Sutherland systems;
these are exactly solvable models of quantum mechanics involving iden-
tical particles in a one dimensional space. Both Chapters 8 and 9 discuss
orthogonal polynomials on the torus, and of Hermite type.

The bibliography is intended to be reasonably comprehensive into the
near past; the reader is referred to Erdélyi et al. [1953] for older papers,
and Internet data bases for the newest articles. There are occasions
in the book where we suggest some algorithms for possible symbolic
algebra use; the reader is encouraged to implement them in his/her



Preface XV

favorite computer algebra system; but again the reader is referred to the
Internet for specific published software.

There are several areas of related current research that we have de-
liberately avoided: the role of special functions in the representation
theory of Lie groups (see Dieudonné [1980], Hua [1963], Vilenkin [1968],
Vilenkin and Klimyk [1991a,b,c, 1995]), basic hypergeometric series and
orthogonal polynomials of ¢ type (see Gasper and Rahman [1990], An-
drews, Askey and Roy [1999]), quantum groups (Koornwinder [1992],
Noumi [1996], Koelink [1996] and Stokman [1997]), Macdonald symmet-
ric polynomials (a generalization of the g type) (see Macdonald [1995,
1998]). These topics touch on algebra, combinatorics and analysis; and
some classical results can be obtained as limiting cases for ¢ — 1.
Nevertheless, the material in this book can stand alone and ‘g’ is not
needed in the proofs.

We gratefully acknowledge support from the National Science Foun-
dation over the years for our original research, some of which is described
in this book. Also we are grateful to the mathematics departments of
the University of Oregon for granting sabbatical leave and the Univer-
sity of Virginia for inviting Y. X. to visit for a year, which provided the
opportunity for this collaboration.

Charles F. Dunkl
Yuan Xu
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1
Background

The theory of orthogonal polynomials of several variables, especially
those of classical type, uses a significant amount of analysis in one vari-
able. In this chapter we give concise descriptions of the needed tools.

1.1 The Gamma and Beta Functions

It is our feeling, or perhaps, our taste, that the most interesting objects
of consideration have expressions which are rational functions of the

underlying parameters. This immediately leads us to consideration of
the gamma function and its relatives.

Definition 1.1.1 The gamma function is defined for Rexz > 0 by the
integral

oo
F(x):/ t*letdt.
0

It is directly related to the beta function:

Definition 1.1.2 The beta function is defined for Rez > 0 and Rey > 0
by

1
B(z,y) =/0 t*~1(1 - t)vdt.

By changing variables s = wv and t = (1 — u)v in the integral
T(z)T(y) =[5 [y s*'tv=le~(*+t)dsdt, one obtains
[(z)I'(y) =T(z +y)B(z,y).

This leads to several useful definite integrals (all valid for Rez > 0 and
Rey > 0):



2 Background

(i) /0"/2 n®"! fcos?” 19d9——B(I y) < (_) )

27\272 (

(ii) I‘(%) = /7 (set = y = 1 in the previous integral);

31

2
o 1

(iii) ‘/0 ! exp(—at?)dt = ia_z/zl“(;), for a > 0;
1

(iv) /0 ==1(1 t2)y 14t = % (g,y) :‘%r (;)P(y)/l‘ (22:-+y);
(v) T(z)I'(1 —z) = B(z,1 —z) = m

sinmz
The last equation can be proven by restricting z by 0 < z < 1, in
the beta integral fol (¢/(1 = ¢))®*~1(1 — t)~'d¢ making the substitution
= t/(1 — t) and computing the resulting integral by residues. Of
course one of the fundamental properties of the gamma function is the
recurrence formula (integration by parts)

I(z+1) =zI'(z),

which leads to the fact that I' can be analytically continued to a mero-
morphic function on the complex plane; also 1/T is entire with (simple)
zeros exactly at {0,—1,—2,...}. Note that I' interpolates the factorial,
indeed '(n+1) =n! forn=0,1,2,....

Definition 1.1.3 The Pochhammer symbol, also called the shifted fac-
torial, is defined for all z by

(z)0=1,(x)n=f[(z+i—1) for n=1,23,....

Alternatively one recursively defines (z), by (z)o = 1 and (Z)n41 =

(Z)n(z+n) forn=0,1,2,3,.... Here are some important consequences
of the definition:

(i) (@)mtn = (Z)m(z +m)n, for m,n € No;
(i) (z)n = (-1)*(1 — n— z), (writing the product in reverse order);

(iii) (2)n-i = ()n(-1)'/(1 =1 - 2)i.

The Pochhammer symbol incorporates binomial coefficient and facto-
rial notation:

(i) (1),,=n!,2"(%) =1x3x5x--x (2n—1);

n



