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Preface

This book is a text for a graduate course in material science, condensed matter physics,
or solid state physics. The student is expected to have taken previous courses in quantum
mechanics and electromagnetic theory. No prior knowledge or course in condensed
matter physics is required.

The earlier chapters introduce basic concepts, such as crystal structures, energy-band
theory, phonons, and types of crystal binding. Intermediate chapters discuss the basic
features of transport and optical properties of solids. Later chapters discuss current
research topics, such as magnetism, superconductivity, and nanoscience. There is
an extensive treatment of metals, from the viewpoints of free electrons, tight binding,
and strong correlations. There is an extensive discussion of semiconductors, from the
viewpoints of both intrinsic, and then extrinsic properties. All chapters except the first
have homework problems. These problems have been worked by a generation of students.

I have taught this course many times. The course syllabus in the first semester is fairly
standard, and covers the basic material. This course material for the second semester
varies from year to year, depending on what topic is “hot” in condensed matter physics. In
writing his book, I have included many of the hot topics of the past.

I wish to thank my wife, Sally, for her patience as I wrote still another textbook. I also
thank Princeton University Press for encouraging me to finish this project, which was
half-done for years. I also thank the Physics Department at Penn State for allowing me to
teach this course for several years as I finished the manuscript.
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-I Introduction

The history of material science is closely tied to the availablility of materials. Experiments
must be done on samples. In the early days of the twentieth century, most of the available
materials were found in nature. They were minerals or compounds.

1.1 1900-1910

Scanning the table of contents of the Physical Review for the decade 1900-1910, one finds
that experiments were done on the following elements and compounds:

Alkali metals: Na, K, Rb

Noble metals: Cu, Ag, Au

Divalent metals: Zn, Cd

Multivalent metals: Al, Sn, Hg, Bi, Pb

Transition metals: Ti, Fe, Ni, Mo, Rh, Ta, W, Ir, Pt
Rare earth metals: Er

Semiconductors: C, Si, Se, P

Binary compounds: CaO, MgO, ZnS, HgS, CdS, H,0, AgCl, AgBr, NaF, NaBr, NaCl, LiCl,
KCl, TIC], T1Br, PbCl,, PbCl,, Pbl,

Oxides: KNO,, LiNO,, NaNO,, AgNO,, K,Cr,0,, NaClO,

The binary compounds were identified by their chemical name, such as cadmium sulfide,
calcium oxide, or ice.
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Table 1.1 A partial list of minerals that were used in experiments
reported in the Physical Review during the period 1900-1910

Name Formula
anatase TiO,
aragonite CaCoO,
brookite TiO,
calcite CaCoO,
cinnabar HgS
eosin C,,HyBr,O,
fluorite CaF,
glass a-Si0,
pyrites FeS,
magnetite Fe,O,
molybdenite MosS,
mica silicates
quartz SiO,
sidot blende ZnS

Among the most interesting materials were minerals. They were usually, and often
only, identified by their mineral name. A partial list is given in table 1.1. Several miner-
als we were unable to identify from their names. The point of this list is that all of these
compounds are found in nature as crystals. The samples were not grown in the laboratory,
they were found in caves or mines. ZnS was then called sidot blende, but today is called
zincblende.

A few materials were actually grown in a laboratory. One was silicon, which was grown
in the research laboratory of the General Electric Company. Other artificial materials used
in experiments were rubber, brass, asphalt, steel, constantan, and carborundum.

1.2 Crystal Growth

Today nearly all materials used in experiments are either grown in a laboratory or pur-
chased from a company that grew them in a laboratory. The techniques were discovered
one by one during the twentieth century. Some notable landmarks:

1. Jan Czochralski [3] invented a method of pulling crystals from their melt in 1917.
His apparatus is shown in fig. 1.1. The crystals are pulled vertically, slowly, starting with
a small seed crystal. Today the crystal is rotated to ensure that inhomogenieties in the
liquid do not make the crystals inhomogeneous. Two-thirds of crystals are grown using
the Czochralski method. Large single crystals are prepared this way. For example, silicon
crystals used in the manufacturing of integrated circuits are pulled.
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FIGURE L.1. (2) Czochralski apparatus for pulling a crystal from the melt.
Melt is at Sch, and a tiny seed particle (not shown) is at the end of the silk
thread K, F. (b) Details of region where the crystal grows.

2. Percy Bridgman [2] reported the Bridgman method in 1925. A hollow cylinder is
packed with powder or small crystals. It is pulled slowly through a hot region, where the
material is melted and recrystalized. Large single crystals can be made this way. The cyl-
inder can be moved vertically or horizontally.

3. William Pfann [4] invented the method of zone refining in 1952, whereby a crystal is
pulled through a hot area that locally melts and recrystallizes it. Zone refining generally
purifies a crystal, by pushing impurities to the end of the crystal. A crystal may be zone
refined several times to obtain a low density of impurities.

4. Large single crystals may be grown from a melt. A supersturated solution of the
compound will precipitate the excess material. At the right temperature, it precipitates by
growing single crystals. This process happens daily in the author’s pantry, as large sugar
crystals are grown in the container of maple syrup. This rock candy is a family favorite.

5. Small crystals can be grown in a vapor. The material is inserted into a container, often
a glass tube. Then it is heated, so the vapor is supersaturated. At the right temperature, it
will grow crystals. This process is slow, but is used for laboratory samples.



