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C Preface >

Deterministic analysis approaches/tools have dominated the whole aerospace
industry for many years. It has been widely accepted, however, that the relevant
non-deterministic analysis methods, either probabilistic or possiblistic, will be
eventually adopted to some extent in this area. This process has been very
slow, partly due to the conservative nature of the industry and partly due to
some difficulties in applying these methods, which are now being addressed
by both academia and industry.

Within the last decade in the engineering field, possibilistic approaches
have been widely studied and applied to the reliability analysis of dynamic
systems. During this period, there has been a lack of research interest
in delivering efficient probabilistic methods. This book presents a novel
technique that applies probabilistic methods to reliability analysis of engi-
neering systems under harmonic loads in the low-frequency range. The
aim was to overcome certain problems of applying probabilistic methods.
The problems that need to be overcome were the nonlinearity of the failure
surface, the intensive computational cost, and the complexity of the dynamic
system.

A perturbation analysis algorithm was developed based on a modal
approximation model. Since the resonance cases are of most concern, the
optimized model simplifies the complexity of the dynamic systems by only
concentrating on the resonance dominating terms in the response element
(expressed in terms of modal coordinates). This optimization and later newly
defined parameters transform the original failure surface into an approximate
but smooth and linear one. Finally, the statistical information of the new para-
meters can be derived from that of the original variables by solving only once
the eigen problem on the mean values of the original variables. An efficient
reliability method, such as FORM, can then be applied.

However, for a given 2D frame structure, the FORM method failed to
accurately predict the probability of failure. The Monte Carlo simulation
method was later adopted to replace the FORM method. The Monte Carlo
simulations were only performed for the new random parameters that were
obtained through one execution of an eigen solver. Thus the overall efficiency
of this combined approach, i.e. perturbation approach plus Monte Carlo
simulation method, is high. Both accuracy and efficiency were achieved
when this combined approach was applied to the 2D structure, as well as to
a complex 3D helicopter model. Finally the response surface method was
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employed to derive the statistical information of the stiffness matrix from
that of the original property random variables.

Low modal overlap factor, responses near resonance, low statistical
overlap and small changes in eigenvalues and Gaussian distribution of the
original variables are the conditions required for this approach to work.
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ABBREVIATIONS

ACSR Active control of structural response
AVS Active vibration suppression
AVC Active vibration control

BG Bubnov-Galerkin

DOF Degree of freedom

FE Finite element(s)

FEA Finite element analysis

FEM Finite element method

FFEM Fuzzy finite element method
FORM First-order reliability method
FRF Frequency response function
GOE Gaussian orthogonal ensemble
HHC Higher harmonic control

IBC Individual blade control

jpdf Joint probability density function
MC Monte Carlo (simulation method)
MCS Monte Carlo simulation (method)
pdf Probability density function

PDE Partial differential equation

RS Response surface

RSM Response surface method

SEA Statistical energy analysis

SFE Statistical finite element

SORM Second-order reliability method
SRBM Stochastic reduced basis method
TEF Trailing edge flap

NOTATION AND SYMBOLS

ES™Dwbtm>xE

~

Mass matrix

Stiffness matrix

Area

Modulus of elasticity (Young’s modulus)
Length

Safety index

Property density

Loss damping factor

Radian frequency/excitation frequency
Cyclic frequency (Hz)/excitation frequency
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Mass-normalized modal matrix

Jjth column vector of mass-normalized modal matrix
ith undamped natural frequency

ith mode shape

Probability

Pdf of random variable x

Mean value of random variable x
Standard deviation of random variable x
Expected value of random variable x
Variance of random variable x
Covariance matrix of random variable x
Confidence level

Fuzzy confidence level

Standard normal distribution function
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