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A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC.!

By, Ax.onso Cuunon.?

i 1, Introduction. In tlns paper we. present a- set of postulates for the
foundation of formal loglc, in which we avoid use of the free, or real,
variable, and .in which we introduce a certain restriction on the law of
excluded middle as a means of avoiding the paradoxes connected with the
mathematies of the transfinite. ‘

Our reason for avoiding use of the free variable is that we require that -
every combination of symbols belonging to our system, if it represents
a proposition at all, shall represent a particular proposition, -unambigou-
ously, and without the addition of verbal explanations. That the use of
the free variable involves violation of this reguirement, we believe is
readily seen. For example, the identity ‘

{4 ooy ‘ a(b+c) = ab+ac

in which a, b, and ¢ are used as free variables, does note state a definite
proposition unless it is known what values may be taken on by these
variables, and this infermation, if not implied in the context, must be given
by ‘2 .verbal addition. The range allowed 'to the variables a, b, and ¢
might consist of all real numbers, or of all .complex numbers, or of some
other set, or the vanges allowed to the variables might differ, and for

. each possibility equation (1) has a different meaning. Clearly, when this

equation is written alone, the proposition intended has not been completely
translated inte symbolic language, and, in order to make the tramslation
complete, the necessary verbal addition must be expressed by means of
the symbols of formal logic and mclnded with the equation, in the formula
used to represent the' proposition. When this is dene we obtain, say,

@ R(@) B®) B(D) Dare- a(b+0) = ab+tac

where R(x) has the meaning, “z is a real num ,” and the symbol Dine
has the meaming described in §§ 5 and 6 below. And in this expressxon
theére ‘are no free variables,

! Received. October 6,. 1981,

*This paper contains, in revised form, the work of the anthor while » National Research
Fellow in 1028-29. 2



POSTULATES FOR THE FOUNDATION OF LOGIC.

A further objection to the use of the free variable is contsined in the
duphcahon of symbolism which arises when the free, or real, variable
and the bound, or apparent, variable are used side by side.® Corresponding
to the proposition, represented by equation (1) when a, b, and ¢! ‘stand
for any three real mumbers, there is also a proposition expressed without
the use of free variables, namely (2), and between these two propositions -
‘we know of no convineing distinction. An'attempt to identify the two -
_ propositions is, however, unsatisfactory, because substitution of (1) for (2);
when thé latter occurs as a part of a more complicated expression, cannot
always be allowed without producing confusion. In fact; the only feasible
solution seems to be’ the ‘complete abandonment of the free variahle a8
a’'part of the symbolism of formal logic.*
~Rather than adopt the method of Russell for avolding the famhar para-

doxes of mathematical logic,® or that of Zermelo,® both of 'which appear-
somewhat artificial, we introduce for this purpose, as we have said, a certain
restriction on .the law’ of excluded middle. This restriction consists in
leaving open the possibility that a propositional function F' may, for some
values X of the independent variable, represent neither a true proposition
nor a false proposition: For such a value X of the independent varisble -
we suppose that F(X) is undefined and represents nothing, and we use
a systeém of logical symbols capable of dealing with propositional flmctlozis
whose ranges of definition are limited. :

In the case of the Russell paradox the relevance of this proposed restrlc—
tion on the law of excluded middle is evident. 'The formula P which leads
to this paradox may be written, in the notation explained below,
{ip.~9(@)} (1.~ 9(9)). It has the property that if we assume ~ P, then
we can infer P and if we assume P then we can ‘infer ~ P. On ‘ordinary
assumptions both the truth and the falsehood of P can be deduced in com-
sequence of this property, but the system of this paper, while it provides
for the existencé of a propositional function 9. ~y(9) ‘does not provide
either that this propositional function shall be true or that it shﬂl be false,
for the value Ay .~ p(p) of the independent variable.

* Other paradoxes either disappear in the same ‘way, or else, as in'the
case of ‘the Epimenides or the paradox of the least undefinable ordinal,

80, the introduction to th, second edition of Whitehead and Russell’s th:qna Mathematica.

4 Unless it is retained as & mers abbreviation of notation.

SB. Russell, Mathematical Logle ss based' on the Theory 'of Types, Amer. Jour. Math.,
vol. 80 (1908), pp. 222-262. A 1list of some of these pmdom, with a reforance to the -
source of each, will be found in thil articls, or!nW'hthmd ndmiuall Principia
Mathematica, vol. 1, pp. 88-64.

SE. Zermelo, Untersuchungen tber die Gruadlagen der Mengenlehre, Msth. Aunalen, -
vol. 65 (1908), pp. 261-981.
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A CHURCH.

they contun ~words wluch are not definable in terms of the undefined
symbols' of our system, and hence need not comcern us. -

The paradox of Burali-Forti is not, however, so readily disposed of.
The question whether this paradox is a consequence of our postulates, or
‘what modification of them will enable us to avoid it, probably must be -
left .open until the theory of ordinal numbers which results from the
postulates has been developed. - -

Whether the system of logic which results - tmn  our postnlates is
adequate for the development of ma.themahcs, and whether it is wholly
tree from eontradlcuon, are questions which we cannot now answer except
by conjecture. Our proposal is to seek at least an empirical answer to
these questions by earrying out in Some detail a derivation of the con-
sequences of our postulates, and it is hoped either that the system will

~ turn out to satisfy the conditions of adequacy and’ freedom from contra-
diction or that it can be made to do so by ‘modifieations or additions.

2. -Relation to intuitionism. Since, in theé postulate set which is
given below, the law ‘of the excluded middle is replaced by weaker
assumptions, the question arises wliat the relation is between the system
of logic which results from this set, and the intuitionism of L. E.J. Brouwer.’

- The ‘two systemd are not the same, because, although both reject a
certain part of the principle of the excluded middle, the parts rejected
are different. The law of double negation, denied by Brouwer, is preserved -
in the system ‘of this paper, and the principle, which Brouwer accepts,
that a statement® from which a contradiction can be inferred is false, we'
find it necessary to abandon in certain cases.

Our system appears, however, to have the property, whxch relates it -
to intuitionism, that a statement of the form Zx.F(x) (read, “there
exists X such that F (x)"") is never provable unless there exists a formula M
such that F (M) is provable.

8. The abstract character of formal, logic. We do mot attach
any character of uniqueness or absolute truth to any particnlnr system
of logic. The entities of formal logic are abstractions, invented because
of their use in describing and systematizing facts of experience or obsetvation,
and their properties, determined in rongh outline by this intended use,
depend for their exact chamter on the arbltrary chowe of the inventor.

. . UBee L.E.J. Brouwer, Intuitionistische longmldm, Jahresberickt der D. Math, Ver, :
vol. 28 (1919), pp. 208-208, and Mathematik, Wissenschaft und Sprache, Monatshefte fir '
Math. u, Phys., vol. 36 (1929), pp: 168-164, and many other papers.
* We purposely use the word, “statement”, becsuge we wish to reserve the word, "pmpo-
sition”, for somethivg either true or false. A statement, in the form of & proposition, which
fails to be either true or false, we regard as a mere group of symbols, without ngniﬁuue

\
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POSTULATES FOR THE rouxm'rmr« OF LOGIC.

We may draw.the annlngy of- a three dimenaonal geometry used in
describing physical space, a case for which, we believe, fhe presence: of
such. a situation is more commonly recognized. The entities of the
- geometry are clearly of abstract character, rumbering as they do planes
without thickness and points which cover no area in the plane, point sets .
containing an infinitude of poiuts, lines of infinite length, and other things
which canmot be reproduced in any physical experiment. Nevertheless ;
the geometry can be applied to physical space in such a way that an
extremely useful ‘correspondence is Set up between - the theorems of the
geometry and observable facts about material bodies in space. In building
the geometry, ‘the proposed application to physical space serves as a rongh
guide in determining what properties the absiract entities shall have, but -
does not assign these properties qompletely. - Consequently thers may be,
and actually are, more than one geometry whose usg is feasible in
.describing physical space. Similarly, there exist, nndonbtodl_v, ‘more than
~ one formal system whose use as a logic is feasible, and of these systems
one may be more pleasing or more convenient than another, ‘but xt cannot
be said that one is right and the other wrong.
in consequence of this abstract character of the system which we_are
‘about to formulate, it is not admissible, in proving theorems of the system,
* to make use of the meaning of any of the symbols, although in the appli- -
cation which is intended’ the symbols do acquire meanings, The initial
set of postulates must of themselves define the system as a formal struc-
ture, and in developing this formal structure referedoe to the-proposed
application must be held irrelevant. There may, indoed, be other sppli
-caﬁonsoftheuystemthanxtsmnsalogic ’
*4. Intuitive logic. It is clear; however, that fomnlas composed of
symbols to which ' no meaning is attached cannot deflne a procedure of
proof or justify an inference from one formula to amother. If our postu-
_lates were expressed wholly- by means of the symbols of formal logic
without use of any words or symbols having & meaning, there wonld -be
no theorems except the postulates themselves. We are therefore obliged
to use in some at least. of our postulates other symbols than the nnde-
fined terms of the formal system, and to_presuppose a knowledge of the
meaning of these symbols, as well as to assume an understanding of a
certain body of principles which these symbols are used to express, and
which belong to what we shall call_intuitive logie.® Tt seems desirable

* The principles of intuitive logic which we assume initfally form, oteom,lpm of
the body of facts to which the formal system, whon completed, is to'be applied. ‘We.
should mot, howsver, allow this 10 confuse us as to the clesr cut distinotion between in-
tdﬂnbﬁcuibmlhgxc.

5



A. CHUROH.
’w make these presupponﬁons as few and as simple as ‘we can, but there
is no possibility of doing withoat them.

‘Before proceeding to the ‘statement of our postnlatea, We ‘shall attempt
to ‘make a list of these principles of iutnitive logic which we find_it ne- °
cessary to assume and of the symbols a knowledge ofwhue megnings
we presuppose. The latter belong to what we shall eall the language of
" intuitive logic, as distingllished from the language of formal logic which
iz made up of the undefined terms of our abstract system.

We assume that we know the meaning of the words cymbol and formula
(by the word formula we mean a set of symbols arranged in an order of
succession, one after the other). We assume the ability to write symbols
and to arrange them in’ a certain ovder on a page, and the ability to
recognize different occurrences of the same symbol and to distinguish
between such a, double océm‘rence of & symbol and the occurrence" of
distinct symbols. And wé assume the possibility of dealing with & formula
.88 a unit, of copying it at any desired point, and of recogmzmg other

. formulas as being the same or distinct.

We assume that we know what it means to say that a cértain symbol
or formula occurs in a given formula, and also that we are able to pick
out and discuss a particular occurrence of one formula in another. -

We assume an understanding of the operation of substfifuting a given
symbol or formula for a. particular occurremce of a given symbol or
formula.

And we assume also an understandmg of-the operation of s'nbstltntlon
throughout a given formula, and this operation we indieate by an
S, SyU| representing the formula which results when we opera.te on the
formula U by replacing X by Y throughout, where ¥ ‘may be any symbol
or formula but X must be a smgle symbol, not a combmation of several
symbols.

- 'We assume that we know how to recognize a given formula as being
obtumable from the formulas of a certain set by repeated combinations of
~ the latter according to a given law. This assumption is used below in
defining the term “well-formed”. - It may be described as an assumption
of the ability to make a deﬁmtlon by induction, when deahng with groups'
of symbols. .

We assume the ahility to make th.e assertion that a given formula is
ome of those belonging tp the abstract system which we are comstructing,
and this assertion we indicate by the words s #rue. - As an abbreviation,
hewever, we shall usually omit the words ¢s #rue, the mere placing of
the formula im an isolated position being taken as a mﬂlcient indieation

of them.
6



- POBTUIATIS FOR m NUNDATIOI OF LOGIC.

We assume mrtherthemenhgandmotthowordmuputof
the language: of intuitive logic, and the use in conneetion with it of varisble _
letters, which we write in bold face type to distinguish them from variable
letters used in the language of formal logic. These variable letters, written .
in bold face type, atand always for a_ vai'iable (or. nndetermine«l) symbol .
. or formula.

We assume the “meaning and ‘use: ot the following words from the
language of intuitive logic: there is, and, or, {f - - then, not, and ig in
the ‘sense of identity. That is, ‘we assume that we know what combinations -
of these words with themselves and our other symbols: eoum.ute pronomtxonq, :
and, in a simple sense, what such, propositions mean., s .

. We assume that we know how to distinguish betwem the words and
symbols ‘we have been enumerating, which we shall describe as symbols
of intuitive logic, and other symbéls, which are mere symboh thhont
meauing, and ‘which we' shall-describe as formal symbols. ..

We assume that we'know what it-is to be a pmposihon of intuitive..
logie, and that we are able to assert such propositions, not merely ome
proposition, but various propositions in succession, And, finally, we assume
the permanency of: a ‘proposition. once asserted, so.that it may at any
later stage be reverted to and used as if just asserted. :

Inmakmgtheprecadmgsutementuit becomes clecrthatncertsin
circle is unavoidable in that we are unable to make owr explanations of
the ideas in question intelligible to any but those who already understand
at ‘least a part of these ideas. ~For this reason we are compelled to
assume. them as known in the beginning independently of our statement
of them. Our purpose has been; not to explain or convey these ideas,
but to point out to those who already understand them what the ideas
" are-to Wwhich we are referring and to explain our symbolism for them. ,
- b. Undefined terms. We are now ready to set down a list of the -

uudefined terms of our formal logie. They are as follows: '

{}(), Y, o 2% & ~, o 4

The expressions { }( ) and 1 [ ] are not, of course, single symbols, but
gets of several symbols, which, however, in every formula which will be
provable as a consequence of vur postulates, always occur in groups in
the drder here given, \with other ‘symbols or formulas between 88 indicated
by the blank spaces. )

In addition to the undefined terms just set down, we allow the m,
the formulas belonging to the system which we are constructing, of any
other- formal symbol, and these additiondl symbols used in our formulas
we call rariables. -

7



A. CHUROR.

An occurrence of a variable X in a given formula is cdladuoeemm

of X 43 & bound variable in the given formula if it is an ovcurrence of X

in & part of the formula of the form Ax [M]; that is, if there is a formula M

such that Ax[M] occurs in the given formula and the occurrence of X in .

question is an occurrence in J.xlll All other occurrences ot a varieble
m a formula are called occurrences as & free variable.

““A formula is said to be well-formed if it is & variable, or if it is one
of the symbols Z, 3, &, ~, s, 4, or if it is obtainable from these symbols
by repeated combinations ot them of ome of the forms {M) (N) and Ax [M],
where.X is any variable and M and N are symbols or formulas which are
being combined. This is s definition by induction. It implies the following
rules: (1) a variable is well-formed (2) 2, 2, &, ~, s, and 4 are well-formed
(8) if M and N are well-formed then {I} ()] is well-formed (4) it x is
a variable and M is well-formed then Zx[M] is well-formed.

A1l the formulas which will be provable as consequences of our ‘postulates -

will be well-formed and will contain no free variables.

The undefined terms of ‘a° formal system have, as we have e- lained,
no meaning except in connection.with a particular application of the system.
But for the formal system which we. gre engaged in constructing we have
in mind a particular application, which constitutes, in fact, the motive for
construeting it, and we give here the meanings ‘which our undefined terms
are to have in this intended application.

. If F is a function and A is a value of the independent variable for which
the funetion is defined, then {F}(A) represents the value taken on by the

function F when the independent variable takes on the value A. The usual

notation is F(A). We introduce the braces on account of the possibﬂity
that F might be a combination of several symbols, but, in the case that F

is a single symbol, we shall otton use the notation F(A) as an. abbreviaﬁon

for the faller expression.'®
Adopting a device due to Schonfinkel,'! we treat a fnnohon of two
variables as a funetion of one variable whose values are functions of one

variable, and a function of three or more variables siwilarly. Thus, what

is usually written F(A,B) we write {(F} (A)) (B), and what is usually written-

F(A, B, C) we write {{{F} (A)} (B)} (C), and so on. But again we frequently

find it eonvenient to employ the mor® usugl notations as abbreviations.
I M is any formula containing the variable x, then Ax[M] is a symbol

for the function whose values are those given by the formula. 'l‘hlt il,

"Thbma{}ne.u-nnmrof!ut,mpulnouudmim Nivd Vot Serfided -

ﬁmmmotmwmmmwmmmmnmummm
$ M. Schonfinkel, maiemaummmmma
(1924) pp. 805-816.
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POSTULATES FOR THE FOUNDATION OF LOGIC.

AX[M] represents a function, whose value for a value L of themdepcndpnt
variable is equal to the result S[ M} of substituting L for'x throughout M,
whenever Si M| turns out to have a meanmg, and whose value is in any

other case undefined,
- The symbol Z stands for a certain proposmonal function of two inde-

L SRS

pendent variables, such that ZZ(F; 6) denotes, “6(z) is a true proposition ;

for all values of = for which F(z) is a true proposition.” It is necessary
to distinguish between the proposltlon I (F, 6) and the proposition
fz-F(@) D 6(x) (read, “For every z, F(x) implies 6(z)”). The latter
proposmon justifies, for any value M of z, the inference F(M)O B(M),
and hence can be used only in the case that the functions' F . and & are
defined for all values of their respective independent variables. " The pro-
-position Z(F, B) does not, on the other hand, justify this inference, although,
‘when {F}(M) is known to Pe true,-it does justify the inference {G}(M).
And the proposition ZT(F, G) is, therefore, suitable for uge in the case that
~ the ranges of definition of the functions F and G.are limited.

The symbol 3 stands for a certain propositional funetion of one inde-
pendent variable, such-that Z(F) denotes, “There exists at least one valne
of x for which F(z) is true.”

The symbol & stands for a certain proposmonal function of fwo inde-
- pendent variables, such that, if P and @ are propositions, ‘& (P, @) is the
logical product P-and-@.-

Fhe symbol ~ stands for & certain proposxtlona.l function of one inde-

pendent variable, such that, if P is a proposition, then ~ (P) is the negation

of P and may be read, “Not- Pr. -

The symbol ¢ stands for a certain function of one independent vmahle,
sach that, if F i8 a +propositional -function of one independent vnnable,
then +(F) denotes, “The. object = such that {F}(x) is true.”

The symbol 4 stands for a certain function of two independent vam,bles,

- the formula A(F, M) being read “The’ abstrartxon from M vnth respect )

w F "
6. Abbreviations and definitions.” In pramce we do not use acm-

ally the notation just described, but introduce various. abbreviations and.

substituted notations, partly for ‘the purpose of shortening our formulas
and partly in order to render them more readable. We do not, however,
regard these abbreyiations as an essential part of our theory but rather

as extraneous. When we use them we do not literally carry out the

development of our system, but we do indicate in full detail how this
development can be carried out, and this is for our purpose sufficient.

As has beern said above, we use {F} (A, B) as an abbreviation for
{{F}(A)}(B) and similarly in the case of functions of larger numbers of
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variables. “Moreover, alike in the case of functions of one v_u'hble and
in the case of functions of two or more variables, we omit the braces
{ } whemever the function is represented by a single symbol rather than
by an expression consisting of several symbols. Thus, if F is & single-
symbol, we write F(R) instead of {F}(A) and F(A, B) instead of {F}(A, B)
o {{FYA}@). e JORN e

We shall usually write [M][N] instead of &(M, N) or {{&}(M)}(N), and
~|M] instead of ~(M) or {~}(M):

When F is a single symbol, we shall often write Fx[M] instead of
F(Ax[M]). : : . : 254

Instead of ZZ(Ax[M], 2x[N]), wé shall write [M]Ox[N]. And e
[Sy[M]] O«[[M] O[N] we abbreviate further to [M]Jx[N], and
[Zy[Zz{M]]] O« [[Z2(M]] Oy [[M] D:[N]]] we abbreviate to [M]Oxy[N] and
so on. : : b B .

Moreover, whenever possible without ambiguity, we omit square brackets

" [ ], whether the brackets belong to the undefined term 4[] or whether they
appear as a part of ome of our ‘abbreviations. In order to allow the
omission of ‘square brackets as often as possible, we adopt the convention
that, whenever there are more than one possibility, the extent of the
omitted square brackets shall be taken as the shortest. And when the

" omission of the square brackets is' not possible without ambiguity, we
can sometimes substitute for them a' dot, or period.” This dot, when it
"geeurs within a parenthesis, enclosed by either square brackets [ ], round
parentheses ( ), or braces { }, stands for square brackets extending from
the place where the dot oceurs and up to the end of the parenthesis,
or, if the parenthesis is divided into sections by commas as in the case -
of fanctions of two or more variables, estending from the place where
the dot occurs and up to the first of these commas or to the end of the
parenthesis, whichever is first reached. And when the dot is not within
any parenthesis, it stands for square brackets extending from the place

" where it occurs and up to the end of the entire formmla. In other words,
a dot represents square brackets extending the greatest possible distance
forward from the point where if occurs. i :

In addition to these abbreviations, we allow afreely the introduction
of abbreviations of a simpler sort, which we-call definitions,’® and which
consist .in the substitution of a particular single symbol for a' particular
well-formed formula containing” no free variables. : ’

12 There seems to be, as a matter of fact, no serious objection to _trebtincudcﬂ.nidpm
as an essential part of the system rather than as extraneous, bt we believe it more con-
.sistent to class them with our other and more complicoted abbreviations. -
; - 10
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We mtroduoe at once the following definitions; using an arrow — to -
mean “Stands for”, or, “Is an abbreviation for": * f

Ve Aphv,~sooop.oy -

U— dpdyv.~.p.eoy g

Q — Aplv.H(n, ). H(v, p)

E — inZg.9(n)

V (P, @) is to be read, “P or @”, U(P Q) is to be read, “P lmphes a7,
Q(F, B) is to be read “F and & are eqmvalent’ and E(M) is to be read
“u eﬂsts"

- And in connection with these symhbols Jnst deﬁned we mtroduce some
farther abbreviations. For V(P, @) we write [P]v[Q], and for UP, Q).
we write [P]D[@]. We abbreviate Q(Ax. M, 1x.N) to [M] = [N]. And
we abbreviate E(x).Ox[M] to ‘x[M], which may be read, “For every x, N”.

The notion of a class may be introduced by means of the deﬁmtion

© K— AQ)-

* The formula K (F) is then to_be rea,d “t.he class of «’s such that {F}(z)
m ” -

7. Postulates. We divide our postulates into two gromps, of which
the first consists of what we shall call rules of procedure and the second of
“what we shali call formal postulates. The latter assert that a given formula -
is trne, and contain nothing from the langnage of intuitive logic other than

- the words is #r1e (and .even these words, as already explained, we leave
. unexpressed when we write the postulates). And the former, the rules of
procedure, contain other words from the language of intuitive logie.

‘The theorems which are proved -as comsequences of these postulates are
of the same form as the postulates of the first group, namely, that a eertain
formula is true. And the proof of a theorem consists of a series of steps
which, from a set of one or more postulates of the first group as a starting
point, leads us to the theorem, each step being justified by an appeal to »
one of the rules of procedure.

The postulates of our first group, the rules of procedure,- are five in .
number:

LJf1 is true, if L is wdlformed if all the occurrences of the varmblex
in L are ocourrences as a bound variable, amd if the variable y does
not occur in L, then K, the result of substituting Sy L| for a particidar
ocwrrencequml is also true.

L. If) ds true, if M and N are well-formed, if the variable X oceurs in M.

~and if the bound variables in M are distinct both from the variable X
ami Jrom the free variables in M, then K, the \result of “substituting
SaM| for a . par tiewlar ccourtence of {AX . M} (N) in ), is also true. -

%

e
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If) is true, if M and N.are well-formed, if the variable % occurs in M,
and if the bound variables in W are distinct both from X and from
the free variables in N, then K, the result «f substituting {Ax. l} m
Jor a porticdar occurrence of SuM| in 3, is also true. -

1V, If {F}(A) is true and F and A are well-fmned, then E(I-')- is tme.
- V. If I(F, B) and {F}(A) are tme, and F, G, and A are well-fmmwd

then {G} (A) is true.

~And our formal postulates are the thlrty-seven followmg

\
i LS

9°-i'~’.°’.P‘-

10.
11.
12.
18.
14,
15.

16.
17.

18.
- 18,
20.
21,
29.

23.

24,

2(9) Jp U(g, 9).
‘@.9(@) g Uy, ) Iy ¢ ().
3(0) s« [0(2) Dz 9 ()] D - T (9, ¥) Dy « v(z)Da'P(z)

2(e) Jp - Zyle(2) Iz 9(z, ¥)] Dy - [o(x) Oz U (9 (), P(2))] Dy -
[e@) Oz 9 (=, Y] Dy - 0(2) Dz W(, ¥).

3(g) D9+ Ty, ¥) Iy 2(f@) O Y (f(2)).
‘@ ?($) 31‘ . H(T: 1P(¢»D¢ 'P(‘W ). i e L
9 (z, f(z)) Ogse - (g (2), Y () Dy ¥ (2, f(2)).

3(e) Dg - Tylo(@) Iz 2(2, )] Vg - [0(@) D u (w(w), W] Oy -
[e () Jz9(x, ] Oy ¥ ().

z .9 (@) Jp Z(p). .
3z9(f(@)) I 2(9). . : & ara
¢z, 7) Dga 2 (v (2)). | :
2(9) Jg 2z ().
2(p) Oy - [¢ @) D= ()] Oy Ay, 'P)
205929+

290 .

pe¢0p g e

2230 [p(). ~0{z). (Y, 0)] Doy~ (g, P),

"II(T’ W)Owﬂ'zxzo 9’(‘”) ~0(2). ”('P: 6).
Zz30[~9u,2). ~ 6(a) 2(9(y))OvO(y)]fJou~3(9(u))
~2(9) Dp Xz .~ p(2).

20p.~q 0y~ pg.

~pOp-gOg~epg. -

~pJp.~ge~-pg.

pOpelepddyegs # e 5
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~ ) (@) Op 0 (@] .
> ﬁ~ g fcgllog.?(lnmff "o tv(z)w.e(w)l Oee®
26, poy~r~p. '
21, ~m~pOpp.

28, ~3(9) - 2('!')9&”(7,'1’)

29. ~ 2(g)Op- ~ Z(y) Oy Iy, ¥).

30. ‘z.9() Jo-[8(2). ¥(@) Oy (0, #')Ii)u(t(v))

1. 9('(9))900"(9, ?).

82, E((6))Je2(0). :
83, [y(z,9) Doy 2, 2) 2 e(z, 2] [9, 9) Oaw(y, 2)} Dg- 9(«. v)O--
e ‘0(4(9’9 “)) 3#’ W(A(,, "»

34. [piz, ¥) Ouy-9(¥, 2) s 9 (, 2] [9 (=, ¥) Doy 9, )] g ,

[9(51 !I) Oﬂ 0(2, ll)] De- ~0(u, ") Quor~s 1/’(4(9, u))otﬁ‘)o("(?x "»

3. [¥(d(p, w) dp ¥{A(®, v))] Dow ¥ (1, 1).

36. E(A(9)) D¢ 9(x, ) Dzy - 9(y, £) O: 0(2, 2).
31. E(A(9))Jp-9(, %) Oy 9y, ).

8. The relation between free and bound variables. By a step
in a proot we mean an application of one of the rules of procedure IV
or V, oceurring in the coirse of the proof. - And in counting the number
of steps-in a proof, each step is to be counted with its proper mnltlphcnty
That is, if a formula M is proved and then used r times as a premise for
subsequent steps of the proof, then each step in the proot of M is to be

" counted r times.

If M and N are well-formed and if N can be derived from M by suc-
cessive applications of the rules of procedure I, IT, and ITI, then M is said
to be convertible mto N, and the process is spoken of as a conversion of
M into N.

The formula N is said to be provable as a cmwequenoe of the formula M,

if M is well-formed, and N cBuld be made a provable formula by adding M .

to our list of formal postul.tes as a thirty-eighth postulate. Either of the
formulas, M or N, or both, may contain free variables, since although none
of our formal postulates contains free variables, there, is, formelly, nothing
to preveni our adding a. thlrty-eighth postulate which does contain free
variables. :

We conclude by proving abont our system of postulates the three
following théorems:
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