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Preface

In essence, class field theory is the study of the abelian extensions of arbitrary global
or local fields. In particular, one is interested in characterizing the abelian extensions
of a given field K in terms of the arithmetical data for K. The most basic example
of such a characterization is the Kronecker-Weber Theorem, which states that the
abelian extensions of the field of rational numbers are subfields of its cyclotomic
extensions, so expressible in terms of roots of unity.

Also of interest is to describe how the prime ideals in the ring of integers of a
global or local field decompose in its finite abelian extensions. In the case of the
quadratic extensions of the field of rational numbers, such a description is obtained
through the Law of Quadratic Reciprocity. There are also higher reciprocity laws of
course, but all of these are subsumed by what is known as Artin Reciprocity, one of
the most powerful results in class field theory.

I have always found class field theory to be a strikingly beautiful topic. As
it developed, techniques from many branches of mathematics were adapted (or
invented!) for use in class field theory. The interplay between ideas from number
theory, algebra and analysis is pervasive in even the earliest work on the subject.
And class field theory is still evolving. While it is prerequisite for most any kind of
research in algebraic number theory, it also continues to engender active research. It
is my hope that this book will serve as a gateway into the subject.

Class field theory has developed through the use of many techniques and points
of view. I have endeavored to expose the reader to as many of the different tech-
niques as possible. This means moving between ideal theoretic and idele theoretic
approaches, with L-functions and the Tate cohomology groups thrown in for good
measure. | have attempted to include some information about the history of the
subject as well. The book progresses from material that is likely more naturally
accessible to students, to material that is more challenging.

The global class field theory for number fields is presented in Chapters 2-6, which
are intended to be read in sequence. For the most part they are not prerequisite for
Chapter 7. (The exceptions to this are in Chapter 6: profinite groups and the theory
of infinite Galois extensions in Section 6, and the notion of a ramified prime in
an infinite extension from Section 7.) The local material is positioned last primar-

ily because it is somewhat more challenging; for this reason, working through the
earlier chapters first may be of benefit.
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For students who have completed an introductory course on algebraic number
theory, a one-term course on global class field theory might comprise Chapters 2-5
and sections 1—4 of Chapter 6. For more experienced students, some of.the matenial
in these chapters may be familiar, e.g., the sections on Dirichlet series and the The-
orem on Primes in Arithmetic Progressions. In that case, the remainder of Chapter 6
may be included to produce a course still entirely on global class field theory. For
somewhat more sophisticated students, Chapter 7 provides the option of including
the local theory.

Facility with abstract algebra and (very) basic topology and complex analysis
is assumed. Chapter 1 contains an outline of some of the prerequisite material on
number fields and their completions. Nearly all of the results in Chapter 1 appear
without proof, but details can be found in Frohlich and Taylor’s Algebraic Number
Theory, [FT], or (for the global fields) Marcus’ Number Fields, [Ma].

The level of preparation in abstract algebra that is required increases slightly
as one progresses through the book. However, I have included a little background
material for certain topics that might not appear in a typical first-year course in
abstract algebra. For example there are brief discussions on topological groups,
infinite Galois theory, and projective limits. Finite Galois theory is heavily used
throughout, and concepts such as modules, exact sequences, the Snake Lemma, etc.,
play important roles in several places. A small amount of cohomology is introduced,
but there is no need for previous experience with cohomology.

The source for the material on Dirichlet characters in Chapter 2 is Washington's
Cyclotomic Fields, [Wa], while the material on Dirichlet series was adapted primar-
ily from Serre’s A Course in Arithmetic, [Sel], and the book by Frohtich and Taylor,
[FT]. The section on Dirichlet density is derived mostly from Janusz® Algebraic
Number Fields, [J], and Lang’s Algebraic Number Theory, [L1).

I first saw class fields interpreted in terms of Dirichlet density in Sinnott’s lec-
tures, [Si], which greatly influenced the organization of the material in Chapters 3
and 4. (This point of view appears also in Marcus’ Number Fields, [Ma].) Other
sources that were particularly valuable in the writing of these two chapters were [J],
[L1], and Cassels and Frohlich’s Algebraic Number Theory, [CF].

The main source consulted in the preparation of Chapters 5 and 6 is [L1],
although [J], [CF], [Si], Neukirch’s Class Field Theory, [N], and the lecture notes of
Artin and Tate, [AT], also were very valuable throughout. For section 7 of Chapter 6,
[Wa] is the primary source, and Lang’s Cyclotomic Fields I and II, [L3], was also
consulted.

Other references that proved particularly useful in the preparation of the chap-
ters on global class field theory include Gras’ Class Field Theory, [G], and Milne’s
lecture notes, [Mi].

The presentation of local class field theory in Chapter 7 relies mainly on the
article by Hazewinkel, [Haz2]. Also very useful were Iwasawa’s Local Class Field
Theory, [1], Neukirch’s book, [N], and the seminal article of Lubin and Tate, [LT].

A preliminary version of this book was used by a group of students and faculty at
the University of Colorado, Boulder. I am indebted to them for their careful reading
of the manuscript, and the many useful comments that resulted. My thanks espe-
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cially to David Grant, who led the group and kept detailed notes on these comments,
and to the members: Suion Ih, Erika Frugoni, Vinod Radhakrishnan, Zachary Strider
McGregor-Dorsey and Jonathan Kish.

Several incarnations of the manuscript for this book have been used for courses
in class field theory that [ have offered periodically. I am grateful to my class field
theory students over the past few years, who have participated in these courses using
early versions of the manuscript. Among those who have helped in spotting typo-
graphical errors and other oddities are Eric Driver, Ahmed Matar, Chase Franks,
Rachel Wallington, Michael McCamy and Shawn Elledge. Special thanks also to
John Kerl for advice on creating diagrams in LaTeX and to Linda Ameson for her
excellent work in typing the first draft of the course outline, which grew into this
book.

In completing this book, I am most fortunate to have worked with Mark Spencer,
Frank Ganz and David Hartman at Springer, and to have had valuable input from
the reviewers. My sincere thanks to them as well.

Tempe, AZ
2007
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Chapter1
A Brief Review

For the convenience of the reader and to fix notation, in this chapter we recall some
basic definitions and theorems for extensions of number fields and their comple-
tions. Typically the material discussed in this chapter would be presented in detail
in an introductory course on algebraic number theory.

We conclude this chapter with a brief discussion of some questions that arise
naturally in the study of algebraic number fields. These questions were important to
the development of class field theory. In subsequent chapters, we shall explore some
of the mathematics they have inspired. Class field theory provides information on
the nature of the abelian extensions of number fields, their ramified primes, their
primes that split completely, elements that are norms, etc. We also treat the abelian
extensions of local fields in a later chapter, where analogous questions may be asked.
The present chapter is intended to be used as a quick reference for the notation,
terminology and precursory facts relating to these concepts.

We state nearly all of the results in this chapter without proof. For a more thor-
ough treatment of introductory algebraic number theory, see Frohlich and Taylor’s
Algebraic Number Theory, [FT], (which includes material on completions), or Mar-
cus’ Number Fields, [Ma], (which does not). Somewhat more advanced books on the

subject include Janusz’ Algebraic Number Fields, [J], and Lang's Algebraic Number
Theory, [L1].

1 Number Fields

A number field is a finite extension of the field Q of rational numbers. If F is a
number field, denote the ring of algebraic integers in F by O. It is well-known that
Orf is a Dedekind domain, so that any ideal of O has a unique factorization into a
product of prime ideals. A fractional ideal of F is a non-zero finitely generated Of-
submodule of F. The fractional ideals of F form a group Zr under multiplication;
the identity in Zr is OF, and for a fractional ideal a, we have

a ' ={x e F:xa< OF).

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4_1, 1
© Springer Science+Business Media, LLC 2009



2 1 A Brief Review

The principal fractional ideals of F form a (normal) subgroup of Zr, denoted Pr.
The quotient Cr = IF/pF is called the ideal class group of F. A non-trivial the-
orem in algebraic number theory says that C is a finite group for any number field
F. Its order is the class number of F, denoted h .

Given a finite extension K / F of algebraic number fields, consider the ideal pOy,

where p is a non-zero prime ideal of Of. Using unique factorization of ideals in O,
we have

pokzm?___ ;s

where the B, are (distinct) prime ideals of Ok, g = g(p) is a positive integer and
the e; are positive integers. We call e; the ramification index for *B;/p, denoted
e; = e(*B;/p). If K/F is a Galois extension, then the Galois group permutes the B ;
transitively, so thate; = - - - = e, = ¢, say.

Since every non-zero prime ideal is maximal in a Dedekind domain, the quotients
Ok / B, and 9F / p are fields, called residue fields. Indeed, they are finite fields of

characteristic p, where p N Z = pZ. We may view OF /p as a subfield of Ok /‘Bj‘
The residue field degree is

f6pi/0y =% [, : 9% /]

If K/F is Galois, then f(B1/p) =--- = f(Pg/p) = f, say.

In general, we have Z‘j:, e(Bj/p)f(B;/p) = [K : F]. When K /F is Galois,
this becomes efg = [K : F].

If K/F is an extension of number fields, we say that the prime p is unramified
in K/F if e(®B;/p) = 1 for all j, p is totally ramified in K /F if there is a unique
prime ‘P above p with e("B/p) = [K : F], p remains inert in K/ F if pOg is prime
in Ok, and p splits completelyin K /F if g = [K : F].

Given an extension K/F of number fields and a prime ideal p of Of, one

approach to finding the factorization of pQOy is the following, sometimes called
the Dedekind-Kummer Theorem.

Theorem 1.1. Let K / F be an extension of number fields and suppose Og = Or|[a].
Let f(X) = Irrp(a, X), the irreducible polynomial of a over F, and let p be a prime
ideal in Of. Put Fp, = OF/p, and denote the image of f(X) in Fp[X] by f(X),

(reduce the coefficients of f modulo p). Suppose in F,[X], the factorization of f(X)
is given by

FX)=piX)" - pe(X)*

where the p;(X) are distinct monic irreducible polynomials in Fy[X]. For each j,

let p(X) be a monic lift of the corresponding p;(X) to Of[X], and let *B; be the
ideal of O generated by p and p (). Then
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€k

pOK_: ‘;'... %

with the B ; distinct prime ideals of Ok . ]

The discriminant of an extension of number fields will be of use to us. This can be
defined in terms of the discriminants of bases for K as a vector space over F. Recall
that if K/F is a finite extension of number fields, with (v, ..., v} an F-basis of
K , then we define the discriminant of this basis to be

d(vy, ..., v,) =det[Trg/r(vivj)] = dt:[[G,'(Uj)]2

where 0, ...,0, : K < F¥& are F-monomorphisms. The relationship between
the discriminants of two different bases for K over F can be described in terms of
the change of basis matrix between them: If A is an n x n matrix with
(Wi, ..., wp) = A(vy, ..., v,)', then

In the case when K = F(a) where [K : F] = n, the matrix [o;(c/™")] is
Vandermonde, so

d,....a" =[] (oil@) - (@)

I<i<j<n

Specifically, if Ox = Of[a] and f(X) is the irreducible polynomial of « over F,
then Nx/r(f'(@)) = (=T d(1,a,...,a"").

Note that different F-bases for K need not have the same discriminant. Hence
the discriminant of the extension K /F must be defined in terms of all the possible
bases for K. To do so, we generate a module with all these discriminants.

Suppose M is a non-zero Op-submodule of K and M contains an F-basis of K.
We let d(M) be the O-module generated by all d(vy, ..., v,) where {vy, ..., v} C
M varies through the F-bases for K contained in M. Of course if M is a fractional
ideal of K then d(M) is a fractional ideal of F. Moreover, if M is a free Or-module,
say M = ®7_ | Orw;, thend(M) = d(w, . .., w,)OF.

The (relative) discriminant of the extension K/ F is dg ;¢ = d(Ok), where O is
considered as a (finitely generated) Or-module. This makes dg,r an integral ideal
of Or. The (absolute) discriminant of K is dx = dg q. Note that Ok is a free
Z-module of rank n = [K : Q], so dx = dk/q is a (principal) ideal in Z, generated
by d(vy, ..., v,) where {v,, ..., v, } is any integral basis for Ok, (by integral basis
we mean a Z-basis for Ok).

One of the reasons why discriminants will be useful to us is that they carry infor-
mation about the primes that ramify in an extension. For a non-zero prime ideal p
of OF, we have that p is ramified in K /F if and only if p | dgF.

We shall make heavy use of the notion of the norm of a fractional ideal. We
record its definition and a few basic facts here. Let K/F be a finite extension of
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number fields. Let p be a non-zero prime ideal of O and let *3 be a prime of O
dividing pOk. Define the norm of B as Ng,r(P) = p/¥/P) Now extend Ng/r to
arbitrary fractional ideals of K by multiplicativity, i.e.,

Nie(BY - B = Ner(BD™ - Ngyp(PBo)™.

Thus the norm of a fractional ideal of K is a fractional ideal of F. Note that if K/ F
is Galois, then

Nk r()Og = l—[ o ().
oeGal(K/F)

Ife € K, then Ng/r(@Ok) = Ng,r(a)OF, where the norm on the right is the usual
element norm. Also, if F € E C K are number fields, then

Nksr = Ngjr o NgjE.

The specific case when F = Q gives Ng () = aZ for some a € Q. We shall
sometimes write N2 for Ng,g(?1), and frequently in our expressions for Dirichlet
series we shall also use N2 to represent the non-negative generator |a| of aZ.

Given a Galois extension of number fields K /F with Galois group G, a non-

zero prime ideal p of Of and a prime ideal ‘P of Ok with ‘B|pOK, we define the
decomposition group

Z(P/p)={o € G:0o(P)=P}.

Note that Z(*B/p) acts on the finite field Fp = Ok /;;B, fixing the subfield F, =

Ok / p elementwise, so there is a natural homomorphism of groups

Z(PB/p) — Gal(Fp/Fy).
From algebraic number theory, we have the following.

Theorem 1.2. Let K /F be a Galois extension of number fields with Galois group
G. Let p be a non-zero prime ideal of OF.

i. G acts transitively on the set of prime ideals *B of Ok that divide pOx whence
(G : Z(PB/p)] = #{primes P of Ok : P|pOx} = g.

Also, if B, P’ are prime ideals of Ok dividing pOy, then Z(B/p) and Z (P’ /p)
are G-conjugate.

ii. Np=#F,, NP = #Fqp and Gal (Fq/F,) is cyclic, generated by the Frobenius
automorphism @, : x — xNp,
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iii. The homomorphism Z(B/p) — Gal(Fq/F,) is surjective; its kernel is called
the inertia subgroup, denoted T (B /p). Note that [Z(B/p) : T(B/p)] = f and
T('B/p) has order e. O

In the case of a Galois extension K / F of number fields, the decomposition group
and inertia subgroup give rise, via the Galois correspondence, to intermediate fields,
called the decomposition field and inertia field, respectively. Let Kz be the fixed
field of Z(B/p) and let K1 be the fixed field of T (P/p). For an abelian extension,
the factorization of the ideals generated by p in these intermediate fields is given by
the following result from algebraic number theory.

Theorem 1.3 (Layer Theorem). Let p be a non-zero prime ideal of O, where K | F
is an abelian extension of number fields. Then p splits completely in Kz /F. The
primes above p remain inert in Ky /K z and ramify totally in K /K. O

If e("B/p) = 1, then via the natural homomorphism in (iii ) of Theorem 1.2, we
have Z(B/p) = Gal (F5/Fp) is cyclic of order f. The Galois group for the residue
fields is generated by the Frobenius automorphism ¢,, whence there is a unique
element ¢ € Z(B/p) that corresponds to ¢, under the natural isomorphism. We
have Z('B/p) = (o). This element ¢ is called the Frobenius element at . We

denote it o = (;‘?j—F) = (B.K/F).

Proposition 1.4. Let K/F be a Galois extension of number fields, p a non-zero
prime of OF that is unramified in K/F and P a prime of Ok with ‘B[pOK. Then
the Frobenius element at P is the unique element ¢ € Gal (K /F) that satisfies
o(a) = aV? (mod P) forevery a € Ok.

Proof. Say o(a) = a™? (mod B) for all « € Ok. From this congruence we see
that o(P) € B, whence o (P) = P, i.e, 0 € Z(P/p). Clearly, the isomorphism

Z(*B/p) = Gal(Fp/F,) maps o to ¢p. Thus o = (—K%: . m]

If we suppose further that G is abelian, then by (i) of Theorem 1.2 we know
that Z(*B/p) depends only on p and we may write Z(p). Also, if p is unramified
in K/F, then we show in Proposition 1.5 below that the Frobenius element at ‘P
depends only on p. In this case, we call it the Artin automorphism for p, denoted
(;;‘;—F) = (p, K/F). We may define a map

{primes of O that are unramifiedin K/F} - G

givenby p - o, = (?}LF)

Proposition 1.5. Let K /F be an abelian extension of number fields, p a non-zero
prime of OF that is unramified in K/F and 8 a prime of O with ‘I!|pOK. Then

o= (%) does not depend on the choice of the prime P above p.
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Proof. To show independence, suppose the primes P and P’ divide pOk. Write
o, o’ for the Frobenius elements at ‘B, P’, respectively. Now by (i) of Theorem 1.2,
there exists T € G such that t(‘B) = B', so

to(a) = t(@™?) (mod P')

= ()" (mod P) VYa € Ok.

But 7o = ot since G is abelian, so o(t(a)) = t()"? (mod P') for all @ € Ok.
Since 7 is a bijection, we must have o (a) = P (mod ') forall @ € Ok, whence
o=0'. 0

Proposition 1.6. Suppose K/ F is an abelian extension with Galois group G and we

have a field L with F € L C K, (so L/F and K /L are also abelian). Let p be a

prime of O that is unramified in K/F. Then (Z}LF) and (;’;—F) are both defined

(277)= (&%),

Proof. Leto = (7%) o = (L‘?T) and let ‘P be a prime ideal of Ok above p.
Then o(a) = P (mod PB) foralla € Og. Let P' = PN O,.Foreverya € O
we have o(a) = @™? (mod T'). Thus a!L =o' o

and

Exercise 1.1. Suppose K /F is Galois but not necessarily abelian. Let 3 be a prime
of Ok above p, and suppose e(*B/p) = 1.

a. Find and prove a statement similar to Proposition 1.6 for the Frobenius element

at 'p.
b. Suppose L is an intermediate field in the extension K /F. How are (—2—) and

K/L
(Kiﬁ—.) related?

c. Fix the prime ideal p of Of and let ‘B vary through all the prime ideals of

Ok above p. Show that the set l(%) : ‘J3|p(’),(, is a conjugacy class in
G = Gal(K/F). 0

Example.

L Let F = @ K = Q@ then G = Gal(K/F) = (2/,7) . We may
assume that m is either odd or divisible by 4, so that p|m if and only if pZ
ramifies in K /Q. Suppose p { m. Leto = (a;_z%) and suppose ‘B]pZ. Then

o(@) = af (mod ‘B). In particular, 0(Z,) = ¢ (mod P). We claim this implies
o(Lm) = L. Suppose we have verified this claim. Then o(¢,) = 5. Since
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= 0p(¢m) and ¢, generates K /Q, it follows that 0 = o,. The Artin auto-
morphism is the same as the p™ power map in this case. It remains to verify the
claim. The following proposition resolves this.

Proposition 1.7. If ¢, {’ are m™ roots of unity in K and ‘B]pZ is unramified, with
¢ = (mod P),theng =¢'.

Proof. Let p,, denote the set of m™ roots of unity and consider the polynomial
X" —1=J] (X — n). Differentiate to obtain:

mX™ ! = Z ]—[(X -n).

NEWm n'#N

NELm

Now evaluate for X = ¢:

me"t =" [le-m=Tle -

NE€Um n'#n n'#

Suppose { = ¢’ (mod P) and ¢ # ¢'. Then [], ., (¢ — n') = 0 (mod PB),
which yields m¢™ ' = 0 (mod ). It follows that P|m¢™ 'Ok, so P|mOk. We
conclude that p|m and thus p is ramified (a contradiction). O

We shall encounter the Artin automorphism again in Chapter V; it plays a central
role in our proofs of the main theorems of class field theory. For now, we are content
to use it to show the following result on primes that split completely in subextensions
of cyclotomic fields. The reader is encouraged to keep this result in mind as we
discuss the definition of class field in Chapter 3.

Theorem 1.8. If K C Q(Ln), then identify Gal (Q(¢,)/Q) = (Z/mZ)X and let

H < (Z / mZ) be the subgroup corresponding to Gal (Q(¢,)/K). The primes
p t m that split completely in K /Q are those p such that p mod m € H.

Proof. The primes that split completely in K'/Q are precisely the primes with triv-

ial decomposition group, hence precisely the unramified primes with trivial Artin
automorphism.

Since p { m, we have that p is unramified. Hence p splits completely if and only
if its Artin automorphism is trivial: (K/Q) = 1. But (K/Q) = (_P_Q(;..)/Q) ‘K =
ap P Thus

p splits completely in K/Q &= g,|x =1
& g, € Gal(Q((m)/K)
< pmodm € H. u]

For example, when m = 13, Q(£3)/Q is of degree 12 and has cyclic Galois
group. Let K be the unique subfield of Q(¢;3) with [K : Q] = 3. In this case, we



