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Modern Birkhauser Classics

Many of the original research and survey monographs in pure and
applied mathematics published by Birkhauser in recent decades
have been groundbreaking and have come to be regarded as found-
ational to the subject. Through the MBC Series, a select number of
these modern classics, entirely uncorrected, are being re-released
in paperback (and as eBooks) to ensure that these treasures remain
accessible to new generations of students, scholars, and resear-
chers.



PREFACE

The origin of simplicial homotopy theory coincides with the beginning of alge-
braic topology almost a century ago. The thread of ideas started with the work
of Poincaré and continued to the middle part of the 20th century in the form
of combinatorial topology. The modern period began with the introduction of
the notion of complete semi-simplicial complex, or simplicial set, by Eilenberg-
Zilber in 1950, and evolved into a full blown homotopy theory in the work of
Kan, beginning in the 1950s, and later Quillen in the 1960s.

The theory has always been one of simplices and their incidence relations,
along with methods for constructing maps and homotopies of maps within
these constraints. As such, the methods and ideas are algebraic and combina-
torial and, despite the deep connection with the homotopy theory of topological
spaces, exist completely outside any topological context. This point of view was
effectively introduced by Kan, and later encoded by Quillen in the notion of
a closed model category. Simplicial homotopy theory, and more generally the
homotopy theories associated to closed model categories, can then be inter-
preted as a purely algebraic enterprise, which has had substantial applications
throughout homological algebra, algebraic geometry, number theory and alge-
braic K-theory. The point is that homotopy is more than the standard varia-
tional principle from topology and analysis: homotopy theories are everywhere,
along with functorial methods of relating them.

This book is, however, not quite so cosmological in scope. The theory has
broad applications in many areas, but it has always been quite a sharp tool
within ordinary homotopy theory — it is one of the fundamental sources of
positive, qualitative and structural theorems in algebraic topology. We have
concentrated on giving a modern account of the basic theory here, in a form
that could serve as a model for corresponding results in other areas.

This book is intended to fill an obvious and expanding gap in the litera-
ture. The last major expository pieces in this area, namely (33|, (67], [61] and
(18], are all more than twenty-five years old. Furthermore, none of them take
into account Quillen’s ideas about closed model structures, which are now part
of the foundations of the subject.

We have attempted to present an account that is as linear as possible
and inclusive within reason. We begin in Chapter I with elementary definitions
and examples of simplicial sets and the simplicial set category S, classifying
objects, Kan complexes and fibrations, and then proceed quickly through much
of the classical theory to proofs of the fundamental organizing theorems of the
subject which appear in Section 11. These theorems assert that the category of
simplicial sets satisfies Quillen’s axioms for a closed model category, and that
the associated homotopy category is equivalent to that arising from topological

spaces. They are delicate but central results, and are the basis for all that
follows.
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Chapter I contains the definition of a closed model category. The foun-
dations of abstract homotopy theory, as given by Quillen, start to appear in
the first section of Chapter II. The “simplicial model structure” that most of
the closed model structures appearing in nature exhibit is discussed in Sections
2-7. A simplicial model structure is an enrichment of the underlying category
to simplicial sets which interacts with the closed model structure, like function
spaces do for simplicial sets; the category of simplicial sets with function spaces
is a standard example. Simplicial model categories have a singular technical ad-
vantage which is used repeatedly, in that weak equivalences can be detected in
the associated homotopy category (Section 4). There is a detection calculus for
simplicial model structures which leads to homotopy theories for various alge-
braic and diagram theoretic settings: this is given in Sections 5-7, and includes
a discussion of cofibrantly generated closed model categories in Section 6 — it
may be heavy going for the novice, but homotopy theories of diagrams almost
characterize work in this area over the past ten years, and are deeply implicated
in much current research. The chapter closes on a much more elementary note
with a description of Quillen’s non-abelian derived functor theory in Section 8,
and a description of proper closed model categories, homotopy cartesian dia-
grams and gluing and cogluing lemmas in Section 9. All subsequent chapters
depend on Chapters I and II.

Chapter III is a further repository of things that are used later, although
perhaps not quite so pervasively. The fundamental groupoid is defined in Chap-
ter I and then revisited here in Section III.1. Various equivalent formulations
are presented, and the resulting theory is powerful enough to show, for exam-
ple, that the fundamental groupoid of the classifying space of a small category
is equivalent to the free groupoid on the category, and give a quick proof of
the Van Kampen theorem. The closed model structure for simplicial abelian
groups and the Dold-Kan correspondence relating simplicial abelian groups to
chain complexes (ie. they’re effectively the same thing) are the subject of Sec-
tion 2. These ideas are the basis of most applications of simplicial homotopy
theory and of closed model categories in homological algebra. Section 3 con-
tains a proof of the Hurewicz theorem: Moore-Postnikov towers are introduced
here in a self-contained way, and then treated more formally in Chapter VII.
Kan’s Ez*-functor is a natural, combinatorial way of replacing a simplicial
set up to weak equivalence by a Kan complex: we give updated proofs of its
main properties in Section 4, involving some of the ideas from Section 1. The
last section presents the Kan suspension, which appears later in Chapter V in
connection with the loop group construction.

Chapter IV discusses the homotopy theory, or more properly homotopy
theories, for bisimplicial sets and bisimplicial abelian groups, with major ap-
plications. Basic examples and constructions, including homotopy colimits and
the diagonal complex, appear in the first section. Bisimplicial abelian groups,
the subject of Section 2, are effectively bicomplexes, and hence have canon-
ical associated spectral sequences. One of the central technical results is the
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generalized Eilenberg-Zilber theorem, which asserts that the diagonal and to-
tal complexes of a bisimplicial abelian group are chain homotopy equivalent.
Three different closed model structures for bisimplicial sets, all of which talk
about the same homotopy theory, are discussed in Section 3. They are all impor-
tant, and in fact used simultaneously in the proof of the Bousfield-Friedlander
theorem in Section 4, which gives a much used technical criterion for detecting
fibre sequences arising from maps of bisimplicial sets. There is a small technical
innovation in this proof, in that the so-called 7.-Kan condition is formulated in
terms of certain fibred group objects being Kan fibrations. The chapter closes
in Section 4 with proofs of Quillen’s “Theorem B” and the group completion
theorem. These results are detection principles for fibre sequences and homol-
ogy fibre sequences arising from homotopy colimits, and are fundamental for
algebraic K-theory and stable homotopy theory.

From the beginning, we take the point of view that simplicial sets are
usually best viewed as set-valued contravariant functors defined on a category
A of ordinal numbers. This immediately leads, for example, to an easily ma-
nipulated notion of simplicial objects in a category C: they’re just functors
A — (, so that morphisms between them become natural transformations,
and so on. Chapter II contains a detailed treatment of the question of when
the category sC of simplicial objects in C has a simplicial model structure.

Simplicial groups is one such category, and is the subject of Chapter V.
We establish, in Sections 5 and 6, the classical equivalence of homotopy theories
between simplicial groups and simplicial sets having one vertex, from a modern
perspective. The method can the be souped up to give the Dwyer-Kan equiva-
lence between the homotopy theories of simplicial groupoids and simplicial sets
in Section 7. The techniques involve a new description of principal G-fibrations,
for simplicial groups G, as cofibrant objects in a closed model structure on the
category of G-spaces, or simplicial sets with G-action (Section 2). Then the
classifying space for G is the quotient by the G-action of any cofibrant model
of a point in the category of G-spaces (Section 3); the classical WG construc-
tion is an example, but the proof is a bit interesting. We give a new treatment
of WG as a simplicial object of universal cocycles in Section 4; one advantage
of this method is that there is a completely analogous construction for simpli-
cial groupoids, which is used for the results of Section 7. Our approach also
depends on a specific closed model structure for simplicial sets with one vertex,
which is given in Section 6. That same section contains a definition and proof of
the main properties of the Milnor FK-construction, which is a functor taking
values in simplicial groups that gives a model for loops suspension QXX of a
given space X.

The first section of Chapter V contains a discussion of skeleta in the
category of simplicial groups which is later used to show the technical (and
necessary) result that the Kan loop group functor outputs cofibrant simplicial
groups. Skeleta for simplicial sets first appear in a rather quick and dirty way
in Section 1.2. Skeleta for more general categories appear in various places: we
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have skeleta for simplicial groups in Chapter V, skeleta for bisimplicial sets in
Section IV.3, and then skeleta for simplicial objects in more general categories
later, in Section VIL.1. In all cases, skeleta and coskeleta are left and right
adjoints of truncation functors.

Chapter VI collects together material on towers of fibrations, nilpotent
spaces, and the homotopy spectral sequence for a tower of fibrations. The
first section describes a simplicial model structure for towers, which is used
in Section 3 as a context for a formal discussion of Postnikov towers. The
Moore-Postnikov tower, in particular, is a tower of fibrations that is functori-
ally associated to a space X; we show, in Sections 4 and 5, that the fibrations
appearing in the tower are homotopy pullbacks along maps, or k-invariants,
taking values in homotopy colimits of diagrams of Eilenberg-Mac Lane spaces,
which diagrams are functors defined on the fundamental groupoid of X. The
homotopy pullbacks can be easily refined if the space is nilpotent, as is done in
Section 6. The development includes an introduction of the notion of covering
system of a connected space X, which is a functor defined on the fundamental
groupoid and takes values in spaces homotopy equivalent to the covering space
of X. The general homotopy spectral sequence for a tower of fibrations is in-
troduced, warts and all, in Section 2 — it is the basis for the construction of
the homotopy spectral sequence for a cosimplicial space that appears later in
Chapter VIII.

Chapter VII contains a detailed treatment of the Reedy model structure
for the category of simplicial objects in a closed model category. This theory
simultaneously generalizes one of the standard model structures for bisimpli-
cial sets that is discussed in Chapter IV, and specializes to the Bousfield-Kan
model structures for the category of cosimplicial objects in simplicial sets, aka.
cosimplicial spaces. The method of the application to cosimplicial spaces is to
show that the category of simplicial objects in the category S° has a Reedy
model structure, along with an adequate notion of skeleta and an appropriate
analogue of realization, and then reverse all arrows. There is one tiny wrinkle
in this approach, in that one has to show that a cofibration in Reedy’s sense
coincides with the original definition of cofibration of Bousfield and Kan, but
this argument is made, from two points of view, at the end of the chapter.

The standard total complex of a cosimplicial space is dual to the realiza-
tion in the Reedy theory for simplicial objects in S°P, and the standard tower
of fibrations tower of fibrations from [14] associated to the total complex is
dual to a skeletal filtration. We begin Chapter VIII with these observations,
and then give the standard calculation of the E; term of the resulting spectral
sequence. Homotopy inverse limits and p-completions, with associated spectral
sequences, are the basic examples of this theory and its applications, and are
the subjects of Sections 2 and 3, respectively. We also show that the homotopy
inverse limit is a homotopy derived functor of inverse limit in a very precise
sense, by introducing a “pointwise cofibration” closed model structure for small
diagrams of spaces having a fixed index category.
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The homotopy spectral sequence of a cosimplicial space is well known to
be “fringed” in the sense that the objects that appear along the diagonal in
total degree 0 are sets rather than groups. Standard homological techniques
therefore fail, and there can be substantial difficulty in analyzing the path
components of the total space. Bousfield has created an obstruction theory to
attack this problem. We give here, in the last section of Chapter VII, a special
case of this theory, which deals with the question of when elements in bidegree
(0,0) in the E»-term lift to path components of the total space. This particular
result can be used to give a criterion for maps between mod p cohomology
objects in the category of unstable algebras over the Steenrod algebra to lift to
maps of p-completions.

Simplicial model structures return with a vengeance in Chapter IX, in
the context of homotopy coherence. The point of view that we take is that
a homotopy coherent diagram on a category I in simplicial sets is a functor
X : A — 8 which is defined on a category enriched in simplicial sets and pre-
serves the enriched structure, subject to the object A being a resolution of I
in a suitable sense. The main results are due to Dwyer and Kan: there is a
simplicial model structure on the category of simplicial functors S (Section
1), and a large class of simplicial functors f : A — B which are weak equiva-
lences induce equivalences of the homotopy categories associated to S and S8
(Section 2). Among such weak equivalences are resolutions A — I — in prac-
tice, I is the category of path components of A and each component of A is
contractible. A realization of a homotopy coherent diagram X : A — S is then
nothing but a diagram Y : I — S which represents X under the equivalence of
homotopy categories. This approach subsumes the standard homotopy coher-
ence phenomena, which are discussed in Section 3. We show how to promote
some of these ideas to notions of homotopy coherent diagrams and realizations
of same in more general simplicial model categories, including chain complexes
and spectra, in the last section.

Frequently, one wants to take a given space and produce a member of a
class of spaces for which homology isomorphisms are homotopy equivalences,
without perturbing the homology. If the homology theory is mod p homology,
the p-completion works in many but not all examples. Bousfield’s mod p ho-
mology localization technique just works, for all spaces. The original approach
to homology localization [8] appeared in the mid 1970’s, and has since been
incorporated into a more general theory of f-localization. The latter means
that one constructs a minimal closed model structure in which a given map f
becomes invertible in the homotopy category — in the case of homology local-
ization the map f would be a disjoint union of maps of finite complexes which
are homology isomorphisms. The theory of f-localization and the ideas under-
lying it are broadly applicable, and are still undergoing frequent revision in the
literature. We present one of the recent versions of the theory here, in Sections
1-3 of Chapter X. The methods of proof involve little more than aggressive
cardinal counts (the cogniscenti will note that there is no mention of regular
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cardinals): this is where the wide applicability of these ideas comes from —
morally, if cardinality counts are available in a model category, then it admits
a theory of localization. We describe Bousfield’s approach to localization at a
functor in Section 4, and then show that it leads to the Bousfield-Friedlander
model for the stable category.

There are ten chapters in all; we use Roman numerals to distinguish them.
Each chapter is divided into sections, plus an introduction. Results and equa-
tions are numbered consecutively within each section. The overall referencing
system for the monograph is perhaps best illustrated with an example: Lemma
8.8 lives in Section 8 of Chapter II — it is referred to precisely this way from
within Chapter II, and as Lemma II.8.8 from outside. Similarly, the corre-
sponding section is called Section 8 inside Chapter II and Section II.8 from
without.

Despite the length of this tome, much important material has been left
out: there is not a word about traditional simplicial complexes and the vast
modern literature related to them (trees, Tits buildings, Quillen’s work on
posets); the Waldhausen subdivision is not mentioned; we don’t discuss the
Hausmann-Husemoller theory of acyclic spaces or Quillen’s plus construction;
we have avoided all of the subtle aspects of categorical coherence theory, and
there is very little about simplicial sheaves and presheaves. All of these topics,
however, are readily available in the literature, and we have tried to include a
useful bibliography.

This book should be accessible to mathematicians in the second year of
graduate school or beyond, and is intended to be of interest to the research
worker who wants to apply simplicial techniques, for whatever reason. We be-
lieve that it will be a useful introduction both to the theory and the current
literature.

That said, this monograph does not have the structure of a traditional
text book. We have, for example, declined to assign homework in the form
of exercises, preferring instead to liberally sprinkle the text with examples and
remarks that are designed to provoke further thought. Everything here depends
on the first two chapters; the remaining material often reflects the original
nature of the project, which amounted to separately written self contained
tracts on defined topics. The book achieved its current more unified state thanks
to a drive to achieve consistent notation and referencing, but it remains true
that a more experienced reader should be able to read each of the later chapters
in isolation, and find an essentially complete story in most cases.

This book had a lengthy and productive gestation period as an object on
the Internet. There were many downloads, and many comments from interested
readers, and we would like to thank them all. Particular thanks go to Frans
Clauwens, who read the entire manuscript very carefully and made numerous
technical, typographical, and stylistic comments and suggestions. The printed
book differs substantially from the online version, and this is due in no small
measure to his efforts.
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Chapter I Simplicial sets

This chapter introduces the basic elements of the homotopy theory of sim-
plicial sets. Technically, the purpose is twofold: to prove that the category of
simplicial sets has a homotopical structure in the sense that it admits the
structure of a closed model category (Theorem 11.3), and to show that the
resulting homotopy theory is equivalent in a strong sense to the ordinary ho-
motopy theory of topological spaces (Theorem 11.4). Insofar as simplicial sets
are algebraically defined, and the corresponding closed model structure is com-
binatorial in nature, we obtain an algebraic, combinatorial model for standard
homotopy theory.

The substance of Theorem 11.3 is that we can find three classes of mor-
phisms within the simplicial set category S, called cofibrations, fibrations and
weak equivalences, and then demonstrate that the following list of properties
is satisfied:

CM1: S is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in S:

N A

Z.

If any two of f, ¢ and h are weak equivalences, then so is the third.

CM3: If f is a retract of g in the category of maps of S, and g is a weak
equivalence, fibration or cofibration, then so is f.

CM4: Suppose that we are given a commutative solid arrow diagram

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either 7 or p is also a weak equivalence.

CM5: Any map f: X — Y may be factored:
(a) f =p-i where p is a fibration and 7 is both a cofibration and a
weak equivalence, and

(b) f =q-j where g is a fibration and a weak equivalence, and j is
a cofibration.
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I. SIMPLICIAL SETS

The fibrations in the simplicial set category are the Kan fibrations, which are
defined by a lifting property that is analogous to the notion of Serre fibration.
The cofibrations are the monomorphisms, and the weak equivalences are mor-
phisms which induce homotopy equivalences of CW-complexes after passage to
topological spaces. We shall begin to investigate the consequences of this list of
axioms in subsequent chapters — they are the basis of a great deal of modern
homotopy theory.

Theorem 11.3 and Theorem 11.4 are due to Quillen [76], but the devel-
opment given here is different: the results are proved simultaneously, and their
proofs jointly depend fundamentally on Quillen’s later result that the realiza-
tion of a Kan fibration is a Serre fibration [77]. The category of simplicial sets
is historically the first full algebraic model for homotopy theory to have been
found, but the verification of its closed model structure is still one of the more
difficult proofs of abstract homotopy theory. These theorems and their proofs
effectively summarize all of the classical homotopy theory of simplicial sets, as
developed mostly by Kan in the 1950’s. Kan’s work was a natural outgrowth of
the work of Eilenberg and Mac Lane on singular homology theory, and is part
of a thread of ideas that used to be called “combinatorial homotopy theory”
and which can be traced back to the work of Poincaré at the beginning of the
twentieth century.

We give here, in the proof of the main results and the development leading
to them, a comprehensive introduction to the homotopy theory of simplicial
sets. Simplicial sets are defined, with examples, in Section 1, the functorial
relationship with topological spaces via realization and the singular functor
is described in Section 2, and we start to describe the combinatorial homo-
topical structure (Kan fibrations and Kan complexes) in Section 3. We intro-
duce the Gabriel-Zisman theory of anodyne extensions in Section 4: this is
the obstruction-theoretic machine that trivializes many potential difficulties
related to the function complexes of Section 5, the notion of simplicial homo-
topy in Section 6, and the discussion of simplicial homotopy groups for Kan
complexes in Section 7. The fundamental groupoid for a Kan complex is in-
troduced in Section 8, by way of proving a major result about composition of
simplicial sets maps which induce isomorphisms in homotopy groups (Theo-
rem 8.2). This theorem, along with a lifting property result for maps which
are simultaneously Kan fibrations and homotopy groups isomorphisms (The-
orem 7.10 — later strengthened in Theorem 11.2), is used to demonstrate in
Section 9 (Theorem 9.1) that the collection of Kan complexes and maps be-
tween them satisfies the axioms for a category of fibrant objects in the sense of
Brown [15]. This is a first axiomatic approximation to the desired closed model
structure, and is the platform on which the relation with standard homotopy
theory is constructed with the introduction of minimal fibrations in Section
10. The basic ideas there are that every Kan fibration has a “minimal model”
(Proposition 10.3 and Lemma 10.4), and the Gabriel-Zisman result that min-
imal fibrations induce Serre fibrations after realization (Theorem 10.9). It is
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then a relatively simple matter to show that the realization of a Kan fibration
is a Serre fibration (Theorem 10.10).

The main theorems are proved in the final section, but Section 10 is the
heart of the matter from a technical point of view once all the definitions and
elementary properties have been established. We have not heard of a proof of
Theorem 11.3 or Theorem 11.4 that avoids minimal fibrations. The minimality
concept is very powerful wherever it appears, but not much has yet been made
of it from a formal point of view.

1.1. Basic definitions.

Let A be the category of finite ordinal numbers, with order-preserving maps
between them. More precisely, the objects for 4 consist of elements n, n > 0,
where n is a string of relations

0-1-52—>:—n

(in other words n is a totally ordered set with n + 1 elements). A morphism
#: m — n is an order-preserving set function, or alternatively a functor. We
usually commit the abuse of saying that A 1s the ordinal number category.

A simplicial set is a contravariant functor X : A% — Sets, where Sets
is the category of sets.

EXAMPLE 1.1. There is a standard covariant functor

A — Top.

n— A%

The topological standard n-simplezx |A™| € R**! is the space

n
iA"; = {(t(),‘. ’ ’tn) € RTLﬂ"l!Zm = 1)ti 2 0}7

1=0

with the subspace topology. The map 8, : |A™| — |A™| induced by § : n — m
is defined by

Bultor -+ tm) = (S0, .-+, n),

where
{ 0 0@ =0
§; = 3
Yieorpti 07 #0

One checks that § — 0, is indeed a functor (exercise). Let T be a topological
space. The singular set S(T') is the simplicial set given by

n — hom(|A"[,T).

This is the object that gives the singular homology of the space T



