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To my wife Julie



Most people, if you describe a train of events to them, will tell you what the result
would be. They can put those events together in their minds, and argue from them
that something will come to pass. There are few people, however, who, if you told
them a result, would be able to evolve from their own inner consciousness what
the steps were which led up to that result. This power is what I mean when I talk
of reasoning backward, or analytically.

—Arthur Conan Doyle, A Study in Scarlet



Preface to the Second Edition

In 8 years after publication of the first version of this book, the rapidly progress-
ing field of inverse problems witnessed changes and new developments. Parts of
the book were used at several universities, and many colleagues and students as
well as myself observed several misprints and imprecisions. Some of the research
problems from the first edition have been solved. This edition serves the purposes
of reflecting these changes and making appropiate corrections. I hope that these
additions and corrections resulted in not too many new errors and misprints.
Chapters 1 and 2 contain only 2-3 pages of new material like in sections 1.5,
2.5. Chapter 3 is considerably expanded. In particular we give more convenicat
definition of pseudo-convexity for second order cquations and included bound-
ary terms in Carleman estimates (Theorem 3.2.1") and Counterexample 3.2.6. We
give a new, shorter proof of Theorem 3.3.1 and new Theorems 3.3.7, 3.3.12, and
Counterexample 3.3.9. We revised section 3.4, where a new short proof of exact
observability inequality in given: proof of Theorem 3.4.1 and Theorems 3.4.3.
3.4.4,3.4.8, 3.4.9 are new. Section 3.5 is new and it exposcs recent progress on
Carleman estimates, uniqueness and stability of the continuation for systems. in
Chapter 4 we added to sections 4.5, 4.6 some new material on size evaluation of
inclusions and on small inclusions. Chapter 5 contains new results on identification
of an elliptic equation from many local boundary measurements (Theorem 5.2.2°,
Lemma 5.3.8), a counterexample to stability, a brief description of recent com-
plete results on uniqueness of conductivity in the plane case. some new results on
identification of many coefficients and of quasilinear equations insectiosn 5.5, 5.6,
and changes and most recent results on uniqueness for some important systems,
like isotropic elasticity systems. In Chapter 7 we inform about new developments
in boundary rigidity problem. Section 7.4 now exposes a complete solution of the
uniqueness problem in the attenuated plane tomography over straight lines (The-
orem 7.4.1) and an outline of relevant new methods and ideas. In section 8.2 we
give a new general scheme of obtaining uniqueness results based on Carleman es-
timates and applicable to a wide class of partial differential equations and systems
(Theorem 8.2.2) and describe recent progress on uniqueness problem for linear
isotropic elasticity system. In Chapter 9 we expanded the exposition in section 9.1

vii



viii Preface to the Second Edition

to reflect increasing importance of the final overdetermination (Theorems 9.1.1,
9.1.2) . In section 9.2 we expose new stability estimate for the heat equation trans-
form (Theorem 9.2.1° Lemma 9.2.2). New section 9.3 is dedicated to emerging
financial applications: the inverse option pricing problem. We give more detailed
proofs in section 9.5 (Lemma 9.5.5 and proof of Theorem 9.5.2). In Chapter 10 we
added a brief description of a new efficient single layer algorithm for an imporatnt
inverse problem in acoustics in section 10.2 and a new section 10.5 on so-called
range tests for numerical solutions of overdermined inverse problems.

Many exercises have been solved by students, while most of the research prob-
lems await solutions. Chapter 7 of the final version of the manuscript have been
read by Alexander Bukhgeim, who found several misprints and suggested many
corrections. The author is grateful to him for attention and help. He also thanks
the National Science Foundation for long-term support of his research, which
stimulated his research and the writing of this revision.

Wichita, Kansas Victor Isakov



Preface to the First Edition

This book describes the contemporary state of the theory and some numerical
aspects of inverse problems in partial differential equations. The topic is of sub-
stantial and growing interest for many scientists and engineers, and accordingly to
graduate students in these areas. Mathematically, these problems are relatively new
and quite challenging due to the lack of conventional stability and to nonlinearity
and nonconvexity. Applications include recovery of inclusions from anomalies of
their gravitational fields; reconstruction of the interior of the human body from
exterior electrical, ultrasonic, and magnetic measurements, recovery of interior
structural parameters of detail of machines and of the underground from similar
data (non-destructive evaluation); and locating flying or navigated objects from
their acoustic or electromagnetic fields. Currently, there are hundreds of publica-
tions containing new and interesting results. A purpose of the book is to collect
and present many of them in a readable and informative form. Rigorous proofs
are presented whenever they are relatively short and can be demonstrated by quite
general mathematical techniques. Also, we prefer to present results that from our
point of view contain fresh and promising ideas. In some cases there is no com-
plete mathematical theory, so we give only available results. We do not assume
that a reader possesses an enormous mathematical technique. In fact, a moderate
knowledge of partial differential equations, of the Fourier transform, and of basic
functional analysis will suffice. However, some details of proofs need quite special
and sophisticated methods, but we hope that even without completely understand-
ing these details a reader will find considerable useful and stimulating material.
Moreover, we start many chapters with general information about the direct prob-
lem, where we collect, in the form of theorems, known (but not simple and not
always easy to find) results that are needed in the treatment of inverse problems.
We hope that this book (or at least most of it) can be used as a graduate text. Not
only do we present recent achievements, but we formulate basic inverse problems,
discuss regularization, give a short review of uniqueness in the Cauchy problem,
and include several exercises that sometimes substantially complement the book.
All of them can be solved by using some modification of the presented methods.



X Preface to the First Edition

Parts of the book in a preliminary form have been presented as graduate courses at
the Johannes-Kepler University of Linz, at the University of Kyoto, and at Wichita
State University. Many exercises have been solved by students, while most of the
research problems await solutions. Parts of the final version of the manuscript have
been read by llya Bushuyev, Alan Elcrat, Matthias Eller, and Peter Kuchment, who
found several misprints and suggested many corrections. The author is grateful to
these colleagues for their attention and help. He also thanks the National Science

Foundation for long-term support of his research, which stimulated the writing of
this book. '

Wichita, Kansas Victor Isakov
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Inverse Problems

In this chapter we formulate basic inverse problems and indicate their applications.
The choice of these problems is not random. We think that it represents their
interconnections and some hierarchy.

An inverse problem assumes a direct problem that is a well-posed problem of
mathematical physics. In other words, if we know completely a “physical device,”
we have a classical mathematical description of this device including uniqueness,
stability, and existence of a solution of the corresponding mathematical problem.
But if one of the (functional) parameters describing this device is to be found (from
additional boundary/experimental) data, then we arrive at an inverse problem.

1.1 The inverse problem of gravimetry

The gravitational field u, which can be measured and perceived by the gravitational
force Vu and which is generated by the mass distribution f, is a solution to the
Poisson equation

(1.1.1) —Au=f

in R3, where lim u(x) = O as | x| goes to +00. For modeling and for computational
reasons, it is useful to consider as well the plane case (R?). Then the behavior
at infinity must be u(x) = Cln|x| 4+ uo(x), where uo goes to zero at infinity. One
assumes that f is zero outside a bounded domain 2, which is a ball or a body
close to a ball (earth) in gravimetry. The direct problem of gravimetry is to find u
given f. This is a well-posed problem: Its solution exists for any integrable f, and
even for any distribution that is zero outside £2; it is unique and stable with respect
to standard functional spaces. As a result, the boundary value problem (1.1.1) can
be solved numerically by using difference schemes, although these computations
are not very easy in the three-dimensional case. This solution is given by the
Newtonian potential

(1.1.2) () = / k(x — ) fO)dy.  k(x) = 1/(dx]x])
Q



2 1. Inverse Problems

(or k(x) = —1/(2)In |x| in R?). Practically we perceive and can measure only
the gravitational force Vu.

The inverse problem of gravimetry is to find f given Vu on I', which is a part
of the boundary 92 of Q.

This problem was actually formulated by Laplace, but the first (and simplest)
results were obtained only by Stokes in the 1860s and Herglotz about 1910 [Her].
We will analyze this problem in Sections 2.1-2.2 and 4.1. There is an advanced
mathematical theory of this problem presented in a book of the author [Is4]. It is
fundamental in geophysics, since it simulates recovery of the interior of the earth
from boundary measurements of the gravitational field. Unfortunately, there is a
strong nonuniqueness of f for a given gravitational potential outside 2. However,
if we look for a more special type of f (like harmonic functions, functions in-
dependent of one variable, or characteristic functions x (D) of unknown domains
D inside €2), then there is uniqueness, and f can be recovered from u given out-
side €2, theoretically and numerically. In particular, one can show uniqueness of
f = x(D) when D is either star-shaped with respect to its center of gravity or
convex with respect to one of the coordinates.

An important feature of the inverse problem of gravimetry is its ill-posedness,
which creates many mathematical difficulties (absence of existence theorems due to
the fact that ranges of operators of this problem are not closed in classical functional
spaces) and numerical difficulties (stability under constraints is (logarithmically)
weak, and therefore convergence of iterative algorithms is very slow, so numerical
errors accumulate and do not allow good resolution). In fact, it was Tikhonov
who in 1944 observed that introduction of constraints can restore some stability to
this problem, and this observation was one of starting points of the contemporary
theory of ill-posed problems.

This problem is fundamental in recovering the density of the earth by interpret-
ing results of measurements of the gravitation al field (gravitational anomalies).
Another interesting application is in gravitational navigation. One can measure the
gravitational field (from satellites) with quite high precision, then possibly find the
function f that produces this field, and use these results to navigate aircrafts. To
navigate aircraft one needs to know u near the surface of the earth 2, and finding
f supported in 2 gives u everywhere outside of 2 by solving a much easier direct
problem of gravimetry. The advantage of this method is that the gravitational field
is the most stationary and stable of all known physical fields, so it is most suitable
for navigation. The inverse problem here is used to record and store information
about the gravitational field. This problem is quite unstable, but still manegeable.
We discuss this problem in Sections 2.2, 2.3, 3.3, 4.1, and in Chapter 10.

Inverse gravimetry is a classical example of an inverse source problem, where
one is looking for the right side of a differential equation (or a system of equations)
from extra boundary data. Let us consider a simple example: in the second-order
ordinary differential equation —u” = f on Q = (—1, 1) in R. Let ug = u( —1),
u; = u'(—1); then

u(x) =ug~+ u(x + I)—‘/' (x = y)f(y)dy when — 1 < x < 1.
-1



1.1. The inverse problem of gravimetry 3

Prescribing the Cauchy data u, 4’ at r = 1 is equivalent to the prescription of two
integrals

f (1 = y)f(y)dy and f FOdy.
Q Q

We cannot determine more given the Cauchy data at t = —1, |, no matter what is
the original Cauchy data. The same information about f is obtained if we prescribe
any u on 9%2 and if in addition we know «’ on 9. In particular, nonuniqueness
is substantial: one cannot find a function from two numbers. If we add to f any
function fy such that

f v(y) foly)dy =0
Q

for any linear function v (i.e., for any solution of the adjoint equation —v" = 0),
then according to the above formulae we will not change the Cauchy data on 9€2.
The situation with partial differential equations is quite similar, although more
complicated.

If Vu is given on I', then u can be found uniquely outside 2 by uniqueness in
the Cauchy problem for harmonic functions using the assumptions on the behavior
at infinity. Observe that given u on Q2 C R? one can solve the exterior Dirichlet
problem for u outside 2 and find d,u on 92 € Lip, so in fact we are given the
Cauchy data there.

Exercise 1.1.1. Assume that € is the unit disk {|x| < 1} in R2.

Show that asolution f € L, (£2) of the inverse gravimetry problem that satisfies
one of the following three conditions is unique. (1) It does not depend on r = |x|.
(2) It satisfies the second-order equation 822 f =0. (3) It satisfies the Laplace
equation Af = 0in Q.

In fact, in the cases (2) and (3), 2 can be any bounded domain with Q2 € C? with
connected R?\2. {Hint: to handle case (1) consider v = rd,u — 2u and observe
that v is harmonic in 2. Determine v in 2 by solving the Dirichlet problem and
then find f. In cases (2) and (3) introduce new unknown (harmonic in ) functions
v=20%uandv = Au.}

Exercise 1.1.2. In the situation of Exercise 1.1.1 prove that a density f(r) creates
zero exterior potential if and only if

I
/ rf(r)dr =0.
0
{Hint: make use of polar coordinates x = r cosf, y = r sin6 and of the expres-
sion for the Laplacian in polar coordinates,
A =r7'@(rd,) + d(r~"d)).

Observe that for such f the potential u does not depend on 6, and perform an
analysis similar to that given above for the simplest differential equation of second
order.}



