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ARTICLE INFO ABSTRACT
Article history: We study numerically the knowledge innovation and diffusion process on four representa-
Received 9 June 2009 tive network models, such as regular networks, small-world networks, random networks
Received in revised form 24 September and scale-free networks. The average knowledge stock level as a function of time is mea-
08 : sured and the corresponding growth diffusion time, 7 is defined and computed. On the four
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types of networks, the growth diffusion times all depend linearly on the network size N as
: T ~ N, while the slope for scale-free network is minimal indicating the fastest growth and
g’;%.m diffusion of knowledge. The calculated variance and spatial distribution of knowledge stock

illustrate that optimal knowledge transfer performance is obtained on scale-free networks.
We also investigate the transient pattern of knowledge diffusion on the four networks, and
a qualitative explanation of this finding is proposed.
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1. Introduction

Knowledge transfer provides opportunities for interpersonal cooperation. It stimulates the creation of new knowledge
and contributes to the innovation ability in organization. Knowledge system is open and self-organized that knowledge
evolves and diffuses through innovation and communication. Knowledge transfer has received much attention from
management scholars, and it has become increasingly important in organizations. A growing body of empirical evidence
indicates that organizations that are able to transfer knowledge effectively from one unit to another are more productive and
more likely to survive than those that are less adept at knowledge transfer [1]. The ability to transfer knowledge represents
a distinct source of competitive advantage for organizations over other institutional arrangements such as markets [2]. This
knowledge-based theory of the firm views organizations as social communities specializing in efficient knowledge creation
and transfer [3]. Although organizations are able to realize remarkable increases in performance through knowledge transfer,
successful knowledge transfer is difficult to achieve [4,5]. Researchers have concluded key elements that affect knowledge
transfer, such as the stickiness of knowledge [6,7], the absorptive capacity of receivers [8], and intermediary and context
for knowledge transfer [9,10]. Knowledge transfer in organizations occurs through a variety of mechanisms. These include
personnel movement [11,12], training [13,14], communication [15-17], technology transfer [ 18], and other forms of inter-
organizational relationships [19,20].

More recently, there has been a surge of research activity on various aspects of complex networks since some important
features of real networks were successfully explained by simple model networks [21-32]. Complex networks, which can
well mimic the interactions between individuals in real systems, provide a substrate for the researchers to study many
interesting dynamical processes. Epidemic spreading [33-37] as well as classical and quantum diffusion [38,39] on complex

* Corresponding author.
E-mail address: lincnj@nuaa.edu.cn (N. Li).

0378-4371/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2009.10.004
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networks have been extensively studied and served as a first step toward the complete understanding of the impact
of network structure on the dynamical process. In light of this, close attentions are paid to the knowledge transfer on
networks, which can be considered as a diffusion process. Ingram and Roberts [40] described how dense friendship networks
affected the performance of Sydney hotels. One explanation for the observed effect is that friendship networks promote
knowledge transfer, allowing managers facing similar market conditions to learn from each other’s experience. In Reagans
and Zuckerman's analysis of corporate research and development teams [41], they described how interactions among
scientists with non-overlapping networks outside of their team improved productivity. Instead of examining how the
structure of social relations affected performance, Tsai [42] found that the most innovative and profitable business units
were central. Some researchers find that the performance of knowledge diffusion in organizations exhibits "small-world"
properties [43,44]. In all these cases, knowledge transfer was assumed to be the causal mechanism linking network structure
to performance.

Although network analysis method has been used in the study of knowledge transfer, we still cannot obtain a clear picture
about how network structures influence the knowledge transfer performance, and whether there exists certain network
structure that can facilitate and promote knowledge transfer more efficiently. Motivated by these considerations, in this
article, we numerically study a simple model of knowledge innovation and diffusion process on different types of network
models. The important topological properties of the real-life population structures are well depicted by these network
models. Regular network, where every agent is directly connected to the same small number of his nearest neighbors, is
the simplest model representing the geometry of the social system. Random networks, where any pairs of agents in the
population are connected with the same probability, describe the existence of disorder in real population. On the other
hand, many real networks also exhibit special topological characteristics: a small average distance as random networks,
large clustering coefficient as regular networks (small-world property) and a power-law degree distribution (scale-free
property). The models introduced by Barabdasi and Albert (BA) [26] and by Watts and Strogatz (WS)[25] can well mimic these
two properties separately. The growth and diffusion of knowledge are examined in details on the four network models, and
we found that the scale-free networks provide an optimal pattern for knowledge transfer process.

This paper is organized as follows. In Section 2, the models of networks and knowledge transfer process are introduced.
In Section 3, We define the computed statistical quantities. The simulation results are given in Section 4. Finally in Section 5
we give a discussion and summarize the article.

2. The model
2.1. Knowledge evolution

Consider N agents existing on an undirected, connected graph G(S, I'), where S = {1, ..., N} is a finite set of nodes
(agents)and I" = (I3, i € S} is the list of connections. Specially, I7 = {j € S — {i}|d(i, j) = 1}, where d(i, j) is the length of
the shortest path from node i to node j on the graph. Only neighboring agents can interact. Each agent i € S is characterized
by a knowledge stock which evolves over time as the agent innovates and receives knowledge broadcast by other agents.
Formally, let v;(t) denote agent i's knowledge stock at time t.

(1) Knowledge innovation

If agent i innovates at time t, his knowledge increases according to

vi(t + 1) = (1+ Bui(t) (1)
with ; > 0 the innovative ability of agent i. Innovative abilities are independently and identically distributed among agents.
(2) Knowledge absorption

Absorption involves an individual incorporating new knowledge and is assumed to be proportional to the difference in
knowledge stock between broadcaster and recipient. The innovating agent i broadcasts to every j € I';. When a broadcast
takes place, all the recipients absorb part of the knowledge that is transferred. Formally, when i broadcasts, j's knowledge
stock increases immediately according to

vi(t) + oj{vi(t + 1) — v;(D)},  ifvi(t + 1) > v(t),
vi(t), otherwise

vi(t+1) = [ (2)
with ¢; the absorptive capability of agent j. There is no consequent loss of knowledge to agent i. Since recipient can only
partially assimilate received knowledge, @; < 1 captures an important aspect of knowledge transfer [45].

We should note that, the value of knowledge stock is a scalar measure of the knowledge amount. When an agent
innovates, which can be considered as self-study, his knowledge stock will increase according to his primary amount of
knowledge (Eq. (1)). It means that, although an agent innovates (self-study), he cannot broadcast if his knowledge stock is
less than that of his neighbor (Eq. (2)).

The value of ; and «; is obtained as

ai =a+ar, Bi = biB, (3)

where o and B are separately lower bound of absorptive capability and upper bound of innovative ability. a; and b; are
random numbers uniformly distributed in (0, 1], and r is a global constant. We set r = 0.2 in this paper.
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2.2. Network model

The simulation of knowledge transfer is run on the four representative network models: regular network, random

network, small-world network and scale-free network.

Regular network: The regular network used here is a one-dimensional lattice consisting of N nodes with periodic boundary
condition and coordination number 2z. It is easily found that every node has the same degree 2z.

Random network: According to the Erdés and Rényi model [24], we start with N nodes and connect every pair of nodes
with probability p, creating a graph with approximately pN(N — 1)/2 edges distributed randomly. In order to keep the
average degree the same with the other three networks, we choose p = 2z/(N — 1), and only the connected networks are

considered.
Small-world network: The algorithm of the WS model is the following [25]: (1) start with a ring lattice with N nodes

in which every node is connected to its first 2z neighbors. In order to have a sparse but connected network at all times,
consider N >> 2z > In(N) > 1.(2) Randomly rewire each edge of the lattice with probability P such that self-connections
and duplicate edges are excluded. This process introduces PNz long-range edges. We choose P = 0.2 throughout this article.

Scale-free network: The scale-free network is generated according to the BA’s algorithm [26]: (1) Growth: Starting with a
small number (m) of nodes, at every time step, we add a new node with z(<m) edges that link the new node to z different
nodes already present in the system. (2) Preferential attachment: When choosing the nodes to which the new node connects,
we assume that the probability /7 that a new node will be connected to node i depends on the degree k; of node i, such that

ki
k) = — (4)

Lk
j

After t time steps this procedure results in a scale-free network with N = t + m nodes and zt edges, whose average degree
is approximately 2z.

3. Statistics

We measure the performance of knowledge transfer in three aspects: the growth and diffusion of knowledge, the
adequacy of knowledge transfer, and the spatial distribution of knowledge.

3.1. The growth and diffusion of knowledge

The average knowledge stock level at time t is defined as

_ 1
o) = = i), (5)
ieS

which is a major concern in the study of knowledge transfer. To characterize knowledge diffusion, we define the growth
diffusion time t associated with the average knowledge stock level by the condition

Ut =17)=C, (6)
where the constant C indicates certain average knowledge stock level.

On the other hand, the knowledge growth rate at time ¢ is measured by

v(t)
ot —1)
which directly illustrates the speed of knowledge growth.

p(t) = 1, (7)

3.2. The variance coefficient of knowledge

The adequacy of knowledge transfer is judged by the variation of knowledge stocks. To some extent, one of the purposes
of knowledge transfer is to narrow the gap of knowledge stocks among agents. The variance can be used to measure the
degree of discrepancy in knowledge stocks,

1 .
o(t) = szf(r) —9(1). (8)
ieS

However, since the value of variance will increase as the average knowledge stock level grows, we use the coefficient of
variance instead of variance,

c(t) =o(t)/v(t). (9)
The value of variance coefficient ranges in value from 0 to 1. Large value of variance coefficient corresponds to large gap of
knowledge stocks among agents. On the contrary, small value of variance coefficient denotes similarity in knowledge stocks.
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Fig. 1. The average knowledge stock as a function of time on four different networks. The system size is 103,
3.3. The spatial distribution of knowledge
The last measurement is related to the degree of spatial order in a system of locally interconnected components. To

check whether the broadcast mechanism on different network structures generates spatially auto-correlated knowledge
allocations, we compute the Moran coefficient,

SO = 55 Zsj ; wij[vi(t) — D(O1[v(0) — D)), (10)
i€S j#i
where
X(i. )
e 11
B 3D IPTTH) -

i€S j#i
X(i, j) indicates whether there is a direct connection between i and j.

The Moran coefficient usually ranges in value from —1 to 1, with values close to zero indicating spatial randomness
(i.e., no spatial dependence). A positive Moran coefficient indicates positive spatial dependence, that is, agents with similar
values of knowledge stocks tend to be located close to each other. Negative values of the Moran coefficient indicates negative
spatial dependence (i.e., agents with unlike values of knowledge stocks tend to be located close to each other).

4. Simulation results

Throughout the simulations, the average degree of each network is 2z = 6 and the initial knowledge stock for each
agent is unity. All of the results have been computed for one thousand independent runs with different configurations of
the innovative and absorptive ability as well as different network realizations, over which averages have been taken.

4.1. The growth and diffusion of knowledge

At first, we investigate the behavior of average knowledge stock level v(t) in time evolution on the four different
networks. Fig. 1 shows the dependence of v(t) on time. We can see that knowledge growth varies greatly on different
networks. Obviously, scale-free network is more conducive to promote the growth of knowledge in the system. We can
get a more clear picture from Fig. 2, which illustrates the knowledge growth rate as a function of time on the four types
of networks. It is observed that the knowledge growth speed on the four different networks follows p(scale — free) >
p(random) > p(small — world) > p(regular), which will be discussed in detail in Section 5.

On the four types of networks, the temporal behaviors of average knowledge stock level with different system size are
computed (Fig. 3) and the growth diffusion time t is measured from the condition in Eq. (6), where we choose the constant

= 10. It has been examined that another choice for the value of C does not make any qualitative difference in the scaling
behavior of 7. In Fig. 4, we show the diffusion time t depending on the system size N on the four different networks. It is
observed that the growth diffusion times all depend linearly on the network size N as ¢ ~ N, and the slope corresponding
to scale-free network is minimal, which indicates the fastest growth and diffusion of knowledge.

This result that scale-free network provides an optimal framework for knowledge growth and diffusion ¢an be qualitative
explained from the viewpoint of network structure. It is known that in scale-free network there are few large degree nodes
who are connected with a finite fraction of the system. We call them hub agents. When small degree agent broadcasts,
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Fig. 2. The knowledge growth rate p as a function of time on four different networks. The system size is 103.
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Fig. 3. The dependence of average knowledge stock level v(t) on the system size N for regular network, small-world network, random network, and
scale-free network.

hub agent may probably learn because he is very likely to be connected with the broadcaster. This provides them with
more chance to absorb knowledge from others and results in higher knowledge stock. On the other hand, when hub agent
broadcasts, a finite fraction of the system agents connected with him will learn immediately, and thus the average knowledge
stock of the system is largely promoted. On scale-free networks, the hub agent play a very important role. The newly
innovated knowledge is quickly transferred to the hub agents from a few innovating agents, and then broadcasted to the
rest of the systems. This mechanism provides fast knowledge growth and diffusion on scale-free network.

4.2. Variance coefficient of knowledge

The variance coefficient of knowledge stock is a measure of the level of overall difference in knowledge stock. The smaller
of the value the more adequate knowledge transfer is. Table 1 shows the variance coefficient as a function of both lower
bound of absorptive ability and network structure. We can see that regular network shows a large variation of knowledge
stock among agents which means that regular network structure is not conducive to the balanced distribution of knowledge.
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Table 1
Variance coefficient as a function of the network structure and the lower bound of absorptive capacity «. The data is obtained by averaging over 10,000
generations after a transient time of 1000 generations for each network. The system size is 103,

o Regular Small-world Random Scale-free
0.0 067407 0.28427 0.12426 0.10163
0.2 ' : 0.47731 0.09185 1 0.04291 0.04214
0.4 : 0.62761 '0.10593 0.04448 0.05057
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Fig.5. Illustration of Moran coefficient as a function of the network structure and the lower bound of absorptive capacity. The data is obtained by averaging
over 10,000 generations after a transient time of 1000 generations for each network. The system size is 10°.

Interestingly, the variance coefficients corresponding to scale-free network and random network are very small, which
suggest high adequacy of knowledge transfer. In regular network, each agent can only exchange knowledge with few close
neighbors, and thus the knowledge transfer is localized. According to the knowledge transfer mechanism (Eq. (1)), the agent
with more knowledge stock will innovate more knowledge, while the agent with less knowledge stock will stay at lower
knowledge level, which results in large variation of knowledge stock in the system. The situation is changed in networks with
long-range edges, such as small-world network, random network, and scale-free networks. The newly innovated knowledge
can be quickly transferred to the others agent, which reduce the overall gap in knowledge stocks.

4.3. The Moran coefficient

Moran coefficient is used to measure the spatial distribution of knowledge. The Moran coefficient as a function of both
lower bound of absorptive ability and network structure is displayed in Fig. 5. For regular network, the value of Moran
coefficient is in the vicinity of 1, which indicates that agents with similar knowledge stock level form exclusive clusters.
This is because the knowledge transfer is localized in regular network, which destroys the equity of knowledge stocks
distribution. On the contrary, scale-free network exhibits a random spatial pattern and its Moran coefficient is in the vicinity
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of 0. This result suggests that knowledge transfer is non-discriminatory among agents, that is to say, agents with either high
knowledge stock or low knowledge stock have the equal opportunity to communicate and transfer knowledge with others
in harmony.

5. Discussion and conclusion

In order to get a deeper insight into the knowledge transfer process on the four types of networks, we investigate the
transient pattern of the knowledge diffusion. Fig. 6 displays the knowledge stocks pattern according to the node index at
different time step on regular network, small-world network, random network, and scale-free network. Firstly, we analyze
the diffusion pattern of regular network. Due to the topological property of regular network where exist only short-range
edges, the knowledge transfer is localized, which means the newly innovated knowledge can hardly be transferred to
distant agents. At the early time step, every agents possess similar knowledge stock due to the same degree. However, few
dominating agents with very high level of knowledge stock will emerge as time evolves, which can be seen in the diffusion
pattern at time 10* on regular network in Fig. 6. Since each agent can only exchange knowledge with few close neighbors,
the agents at higher knowledge level will innovate more and more knowledge, while the agents with less knowledge stock
innovate less knowledge and will stay at lower knowledge level. In small-world network, there exist long-range edges,
which make the knowledge transfer become easier. We can see from the diffusion patten at the first time step on small-
world network, the newly innovated knowledge can be transferred to faraway agent in only one time step. This property
can largely reduce the variance of the knowledge stocks in the system. However, since the long-range edges are very few,
the localization of knowledge transfer still occurs in some areas. Therefore, we can find several peaks in the growth and
diffusion pattern on small-world network, which is shown in Fig. 6.

The Euclidean structure of the system is totally destroyed in random network where any pairs of agents in the population
are connected with the same probability. The newly innovated knowledge can be transferred to any of the agents in the
system through only several time steps, which largely improves the diffusion of knowledge and reduces the variance of the
knowledge stocks of the system. Since in random network the degree of each agent is nearly the same (lower panel of Fig. 6),
we expect a homogeneous diffusion pattern of knowledge on random network, which is confirmed by simulation (Fig. 6). On
scale-free network, the behavior of the diffusion pattern of knowledge at the earlier time steps is almost the same as that on
random network. As the time evolves, the growth of knowledge becomes much fast. It is known that in scale-free network
there exist few hub agents who are connected with a considerable number of agents in the system. When the agent with
small degree broadcasts, hub agent may probably receive the newly innovated knowledge because he is very likely to be
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connected with the broadcaster. This provides the hub agents with higher knowledge stock. In Fig. 6, we display the adjacent

‘average of knowledge diffusion pattern at time 10* on scale-free network as well as its degree distribution according to the

agent index. It is found that the knowledge stock of an agent is proportional to its degree. On the other hand, when hub agent
broadcasts, a large fraction of the agents connected with him will learn immediately, and thus the average knowledge stock
of the system is efficiently improved. On scale-free networks, the hub agent plays a very important role that he gathers the

_newly innovated knowledge from several innovating agents, and then broadcast to the rest of the systems. This mechanism

provides the fastest knowledge growth and diffusion on scale-free network.
In this article, we study how the growth and diffusion of knowledge is affected by the network structure. Simulation

_results indicate that the steady-state level of average knowledge is maximal in scale-free network which holds adequacy

and equity in knowledge transfer as well. We explain these results by carefully investigating the dynamics of knowledge
transmission on networks with different architectures of connections among agents. Since the growth and diffusion of
knowledge on the scale-free structure is very efficient, it may be a good target for reformation in company and government.

Finally, we point out that our study just offers a starting point for understanding the interplay between network structure
and knowledge transfer. More profound conclusions need further investigations.
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is much enhanced in the range of small payoff parameters on a lattice with slightly annealed
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1. Introduction

The evolutionary game theory has been considered as an important approach to characterizing and understanding the
emergence of cooperative behavior in systems consisting of selfish individuals [1]. Such systems are ubiquitous in nature,
ranging from biological to economic and social systems. Since the groundwork on repeated games by Axelrod [2,3], the
evolutionary prisoner’s dilemma game (PDG) as a general metaphor for studying the cooperative behavior has drawn much
attention from scientific communities. Due to the difficulties in assessing proper payoffs, the PDG has some restriction in
the discussion of the emergence of cooperative behavior. Thus, the proposal of the snowdrift game (SG) was generated to
be an alternative to PDG [4,5]. The SG, equivalent to the hawk-dove game, is also of biological interest. Both of the games
are versions of matrix games describing the interaction between two players. The payoff of the players depend on their
simultaneous decisions to cooperate or defect. For mutual cooperation both players receive the rewards R, but only the
punishment P for mutual defection. A defector exploiting a cooperator gets an amount T (temptation to defect) and the
exploited cooperator receives S (suckers payoff). These elements satisfy the condition that T > R > P > S for PDG, and
T > R > S > P for SG. The values of these payoffs create an unresolvable dilemma for intelligent players who wish
to maximize their own income; namely, defection brings higher individual income independently of the other players’
decisions, but for mutual defection they receive the second worst result. Thus, the undesired outcome of mutual defection
emerges in well-mixed populations [6], which is contrary to the empirical evidence. In order to solve these social dilemmas,
a variety of suitable extensions on these basic models have been investigated. It is found that several mechanisms, such as
kin selection [7], “tit-for-tat” [3,8] strategy, and voluntary participation [9-11], facilitate the emergence and persistence of
cooperation in the populations.

The spatial game, introduced by Nowak and May [12,13], is a typical extension, which can result in emergence and
persistence of cooperation. The dynamics are governed by a deterministic rule: in each subsequent round, players adopt
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the strategy of one who has gained the highest payoff among its neighbors (including also themselves) in the previous
round. It has been shown that the spatial effects promote substantially the survival of cooperators [14-17]. The reason
is that individuals usually occupy well-defined territorial regions. For a certain range of values of the payoff parameters,
complex spatial patterns show up with cooperators and defectors coexisting (spatial chaos). In these structured populations,
cooperative strategies can build clusters in which the benefits of mutual cooperation outweigh the losses against defectors,
keeping the population of cooperators stable. In light of this, many attentions have been paid to the effects of spatial
structures, such as lattices [18-21] and networks [22-29], on cooperative behavior. Recently, Santos and Pacheco studied
the evolution of cooperation on more realistic network of contacts (NOCs) with scale-free degree distribution [30-33].
They demonstrated that, for all dilemmas, heterogeneous NOCs favor the emergence of cooperation, such that long-term
cooperative behavior easily resists short-term noncooperative behavior.

Among the previous studies on evolutionary game in spatially-structured populations, the NOCs between those
individuals is always deterministic; namely, all pairs of individuals, directly connected, must engage in a single round
of a given game. In real populations, however, both the topological and temporal aspects of the environment affect the
interactions between players. In light of this, Vainstein et al. study the robustness of cooperation in spatial evolutionary
games by introducing quenched site diluted lattices [34,35]. However, two shortcomings prevent Vainstein’s model from
well characterizing the features of the social and biological systems. On one hand, the players on the diluted sites are
permanently eliminated, and the total number of players are not fixed for different values of dilution probability. On
the other hand, the quenched site diluted lattice keeps unchanged during the evolution. These two disadvantages can be
overcome by using lattice with bond dilution, in which all of the players are active. Moreover, we can also introduce annealed
bond dilution to mimic the dynamical NOCs in real systems. According to these considerations, in this paper, we push the
research to more extensive situations by investigating spatial evolutionary PDG and SG on a two-dimensional square lattice
with both quenched and annealed bond dilution. It is found that, in quenched bond dilution case, the system presents a
pinning-depinning transition. In the subcritical region, the boundary of the clusters are pinned due to the presence of
defects in diluted lattice, and the clusters are localized and stable. In the supercritical region, however, the large clusters with
unconstrained boundaries are formed. This transition separates a region with spatial chaos from one with stable groups of
cooperators [34]. We determine the critical bond occupation probability and the critical exponent for this transition, which
are different from those with quenched site dilution. For annealed bond dilution, on the other hand, there is no such crossover
behavior, and the cooperation is much enhanced in certain parameter region.

The remainder of the paper is organized as follows. The model and the measurements are presented in Section 2.
Simulation results and discussions are provided in Section 3. Finally we draw the conclusion remarks in Section 4.

2. The model

We consider a N = 100 x 100 two-dimensional square lattice with periodic boundary conditions. The bond dilution is
introduced, which means the bonds in the square lattice are chosen randomly to be active with probability g, and the others
are set to be inactive. This disorder can be either quenched or annealed. For quenched bond dilution, the diluted lattice is
fixed throughout the evolution. While, for annealed bond dilution, the diluted lattice evolves with time and the population
structure is dynamical.

The interacting players are placed on the sites of the diluted lattice. Each player follows one of the two simple strategies:
cooperation (C) or defection (D), represented by the variable S; = =£1 respectively. In each generation, the players combat
with each other through the active bond and self-interactions are excluded. The players collect their payoffs depending on
the chosen strategies, according to the rescaled payoff tables with single parameter for each game: T = b, R = 1, and
P=S=0forPDGandT=1+4+r,R=1,S=1—r,andP = 0 for SG, where 1 <b <2and0 < r < 1. At the end of each
generation, the players update their strategies according to the deterministic rule [12,22], i.e. each individual will adopt the
strategy of the player with the greatest payoff among its connected neighbors and itself in the next round.

To characterize the macroscopic behavior of the system, we introduce three order parameters [34].

(1) Cooperator density

Let p.(t) represents the cooperator density at a given time,

1 N
pe®) = 52 3 i+ ). (1)
i=1

Since we are interested in the long time regime, and the results depend on the choice of the diluted bonds both for quenched
and annealed cases, we define the order parameter as the average over time ({- - -)) and over the realizations of the disorder
(- - -) of the asymptotic cooperator density p. = (o-(c0)). Thus p. = 0 means that the population is invaded by defectors,
and p. = 1 that the population is full of cooperators. In an intermediate case 0 < p. < 1, both strategists coexist.

(2) Active player density

The fraction of active players, i.e. the fraction of players who change strategy at each time, is

1 B
palt) = o ;“ —stst), )
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Fig. 1. The cooperator density p. (upper panels) and the active player density p, (lower panels) as functions of the bond occupation g for PDG (left panels)
and SG (right panels) with different values of b and r. The critical values g* of bond occupation are illustrated for b = 1.4 in PDG (left inset) and r = 0.6 in

SG (right inset).
where S| denotes the strategy of player i at time step t. Our second order parameter is defined as p, = (pq(00)). Thus p = 0
means that all players are frozen, and p, = 1 means that all individuals are changing strategy.

(3) Persistence

The fraction of players that do not change strategy before time step t is represented by persistence P(t), which defines

the third order parameter P, = (P(c0)).

3. Simulation results and discussions

3.1. Quenched bond dilution

Through Monte Carlo (MC) simulations, we study the three quantities defined above for different values of bond
occupation fraction g. The simulation results are obtained by averaging over 5000 MC time steps after a transient time
of 10,000. We confirmed that averaging over larger periods or using different transient times did not change the conclusion.
Furthermore, final data have been computed for 128 independent runs with different realizations of bond dilution, over
which averages have been taken. All simulations start with an equal percentage of strategies (cooperators and defectors)
randomly distributed among the individuals. In this way, all sites are initially populated with a strategy, and no initial
advantage is given to cooperators or defectors. We have confirmed that other choices of the initial condition do not bring
qualitative difference.

In Fig. 1, the asymptotic cooperator density p. for PDG and SG are plotted against the bond occupation probability g,
in which the behavior of p, is similar to that in site dilution case [34]. It is found that, for small occupation fraction, the
curves for different values of b and r merge in PDG and SG separately. This is because that, when g is near zero, almost all
players are isolated and do not change strategy since there is no combat at all. The asymptotic cooperator density is the
same as the initial one p. = 1/2. As the occupation density increases, the clusters with small numbers of sites form, in
which, irrespective of the values of b and r, the defectors are dominant. It can be seen as a decreasing curve of p, from the
origin. When the occupation fraction reaches certain value, the cooperative behavior will be determined by the dynamics,
and the curves for different parameter values will depart from each other: the higher the b and r are, the more favorable
the defector is; and vice versa. For PDG, the maximum cooperator density occurs at ¢ = 1in the regionof 1 < b < 1.33;
on the other hand, in the region of 1.5 < b < 2, the optimal p, is located at g = 0. For SG, in the region of 0 < r < 0.34,
the maximal value of p. occur at large g; for 0.65 < r < 1, the trend of the curve is opposite to that for 0 < r < 0.34,
and the optimal value of p. is located at ¢ = 0. In these cases cooperators and defectors, respectively, are at an advantage
when interacting, and the fraction of active players stays at very small value (see lower panels of Fig. 1). The most interesting
case occurs in the intermediate region of 1.33 < b < 1.5 for PDG and 0.34 < r < 0.65 for SG, where a sharp decrease in
cooperator density p. and a sharp increase in active players density p, simultaneously appear at g* = 0.94 for PDG and at
g* = 0.89 for SG. We should notice that this point is much higher than the bond percolation transition gysng = 1/2 0n a
square lattice [36]. For ¢ < g*, the boundary of the clusters are pinned due to the presence of defects in diluted lattice, and
the clusters are localized and stable. For g > g*, however, the large clusters with unconstrained boundaries are formed, and



