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Preface

Paul Erd6s liked to talk about The Book, in which God maintains the perfect
proofs for mathematical theorems, following the dictum of G. H. Hardy that
there is no permanent place for ugly mathematics. ErdGs also said that you
need not believe in God but, as a mathematician, you should believe in
The Book. A few years ago, we suggested to him to write up a first (and
very modest) approximation to The Book. He was enthusiastic about the
idea and, characteristically, went to work immediately, filling page after
page with his suggestions. Our book was supposed to appear in March
1998 as a present to Erd6s’ 85th birthday. With Paul’s unfortunate death
in the summer of 1996, he is not listed as a co-author. Instead this book is
dedicated to his memory.

We have no definition or characterization of what constitutes a proof from
The Book: all we offer here is the examples that we have selected, hop-
ing that our readers will share our enthusiasm about brilliant ideas, clever
insights and wonderful observations. We also hope that our readers will
enjoy this despite the imperfections of our exposition. The selection is to a
great extent influenced by Paul Erd6s himself. A large number of the topics
were suggested by him, and many of the proofs trace directly back to him,
or were initiated by his supreme insight in asking the right question or in
making the right conjecture. So to a large extent this book reflects the views
of Paul Erd6s as to what should be considered a proof from The Book. “The Book”

A limiting factor for our selection of topics was that everything in this book
is supposed to be accessible to readers whose backgrounds include only
a modest amount of technique from undergraduate mathematics. A little
linear algebra, some basic analysis and number theory, and a healthy dollop
of elementary concepts and reasonings from discrete mathematics should
be sufficient to understand and enjoy everything in this book.

We are extremely grateful to the many people who helped and supported
us with this project — among them the students of a seminar where we
discussed a preliminary version, to Benno Artmann, Stephan Brandt, Stefan
Felsner, Eli Goodman, Torsten Heldmann, and Hans Mielke. We thank
Margrit Barrett, Christian Bressler, Ewgenij Gawrilow, Michael Joswig,
Elke Pose, and Jorg Rambau for their technical help in composing this
book. We are in great debt to Tom Trotter who read the manuscript from
first to last page, to Karl H. Hofmann for his wonderful drawings, and
most of all to the late great Paul Erdds himself.

Berlin, March 1998 Martin Aigner - Giinter M. Ziegler
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Preface to the Fourth Edition

When we started this project almost fifteen years ago we could not possibly
imagine what a wonderful and lasting response our book about The Book
would have, with all the warm letters, interesting comments, new editions,
and as of now thirteen translations. It is no exaggeration to say that it has
become a part of our lives.

In addition to numerous improvements, partly suggested by our readers, the
present fourth edition contains five new chapters: Two classics, the law of
quadratic reciprocity and the fundamental theorem of algebra, two chapters
on tiling problems and their intriguing solutions, and a highlight in graph
theory, the chromatic number of Kneser graphs.

We thank everyone who helped and encouraged us over all these years: For
the second edition this included Stephan Brandt, Christian Elsholtz, Jiirgen
Elstrodt, Daniel Grieser, Roger Heath-Brown, Lee L. Keener, Christian
Lebeeuf, Hanfried Lenz, Nicolas Puech, John Scholes, Bernulf Weilbach,
and many others. The third edition benefitted especially from input by
David Bevan, Anders Bjomer, Dietrich Braess, John Cosgrave, Hubert
Kalf, Giinter Pickert, Alistair Sinclair, and Herb Wilf. For the present edi-
tion, we are particularly grateful to contributions by France Dacar, Oliver
Deiser, Anton Dochtermann, Michael Harbeck, Stefan Hougardy, Hendrik
W. Lenstra, Giinter Rote, Moritz Schmitt, and Carsten Schultz. Moreover,
we thank Ruth Allewelt at Springer in Heidelberg as well as Christoph
Eyrich, Torsten Heldmann, and Elke Pose in Berlin for their help and sup-
port throughout these years. And finally, this book would certainly not look
the same without the original design suggested by Karl-Friedrich Koch, and
the superb new drawings provided for each edition by Karl H. Hofmann.

Berlin, July 2009 Martin Aigner - Giinter M. Ziegler
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Six proofs Chapter 1
of the infinity of primes

It is only natural that we start these notes with probably the oldest Book
Proof, usually attributed to Euclid (Elements IX, 20). It shows that the
sequence of primes does not end.

B Euclid’s Proof. For any finite set {p,...,p,} of primes, consider
the number n = pypg <+ -p, + 1. This n has a prime divisor p. But p is
not one of the p;: otherwise p would be a divisor of n and of the product
p1p2 - - - Py, and thus also of the difference n — pyps-- - p, = 1, which is
impossible. So a finite set {py, .. ., p, } cannot be the collection of all prime
numbers. O

Before we continue let us fix some notation. N = {1,2,3,...} is the set
of natural numbers, Z = {...,-2,—1,0,1,2, ...} the set of integers, and
P={2,3,5,7,...} the set of primes.

In the following, we will exhibit various other proofs (out of a much longer
list) which we hope the reader will like as much as we do. Although they
use different view-points, the following basic idea is common to all of them:
The natural numbers grow beyond all bounds, and every natural number
n 2> 2 has a prime divisor. These two facts taken together force P to be
infinite. The next proof is due to Christian Goldbach (from a letter to Leon-
hard Euler 1730), the third proof is apparently folklore, the fourth one is
by Euler himself, the fifth proof was proposed by Harry Fiirstenberg, while
the last proof is due to Paul Erds.

W Second Proof. Let us first look at the Fermat numbers F,, = 22" +1 for 5‘1’ _ g

n =0,1,2,.... We will show that any two Fermat numbers are relatively B = 17

prime; hence there must be infinitely many primes. To this end, we verify g, — 957

the recursion n-1 Fy = 65537
[[B = Fa-2  (n2>1), Fs = 641-6700417
k=0 The first few Fermat numbers

from which our assertion follows immediately. Indeed, if m is a divisor of,
say, Fy, and F,, (k < n), then m divides 2, and hence m = 1 or 2. But
m = 2 i3 impossible since all Fermat numbers are odd.

To prove the recursion we use induction on n. For n = 1 we have Fy = 3
and F; — 2 = 3. With induction we now conclude

ﬁFk = (ﬁFk)F,, = (Fa—-2)F, =
k=0 k=0

=@ -+ =2 -1=F,-2. O



Six proofs of the infinity of primes

Lagrange’s Theorem

If G is a finite (multiplicative) group

and U is a subgroup, then |U|

divides |G|.

B Proof. Consider the binary rela-

tion .
anbies bal €U

1t follows from the group axioms

that ~ is an equivalence relation.

The equivalence class containing an

element a is precisely the coset

Us={za:z€ U}

Since clearly |[Ua| = |U|, we find
that G decomposes into equivalence
classes, all of size |U|, and hence
that |U] divides |G]. O

In the special case when U is a cyclic
subgroup {a,a?,...,a™} we find

thatm(thsgmaﬂestpomnvemw-

o

12
Steps above the function f(t) = 1

n n+l

B Third Proof. Suppose P is finite and p is the largest prime. We consider
the so-called Mersenne number 2° — 1 and show that any prime factor ¢
of 27 — 1 is bigger than p, which will yield the desired conclusion. Let g be
a prime dividing 27 — 1, so we have 2P = 1 (mod q). Since p is prime, this
means that the element 2 has order p in the multiplicative group Z,\ {0} of
the field Z,. This group has ¢ — 1 elements. By Lagrange’s theorem (see
the box) we know that the order of every element divides the size of the
group, that is, we have p | ¢ — 1, and hence p < ¢. 0

Now let us look at a proof that uses elementary calculus.

B Fourth Proof. Let7(z) := #{p < z : p € P} be the number of primes
that are less than or equal to the real number z. We number the primes
P = {p1,p2,ps,...} in increasing order. Consider the natural logarithm
log z, defined as log z = [ 1dt.

Now we compare the area below the graph of f(t) = % with an upper step
function. (See also the appendix on page 10 for this method.) Thus for
n <z <n+1wehave

loz<1+1-+-1+ .+ : +1
B¢ = 737} n-1
1
< Z—, where the sum extends over all m € N which have

m only prime divisors p < z.

Since every such m can be written in a unique way as a product of the form

I p"», we see that the last sum is equal to
p<z

I1(Tx

p€EP k>0
p<z

The inner sum is a geometric series with ratio %, hence

n(z)

p Pk
logz < H : — = —_
2P 175 pEPp_l o PR 1
<z p<z
Now clearly px > k + 1, and thus
Pk 1 k+1
=1 <l4d- = —o
pe—1 ¥ pe—1 ~ * k k'
and therefore
i1
] < — = +1.
ogzr < l;l p

Everybody knows that log « is not bounded, so we conclude that 7(z) is
unbounded as well, and so there are infinitely many primes. g



Six proofs of the infinity of primes

B Fifth Proof. After analysis it’s topology now! Consider the following
curious topology on the set Z of integers. For a,b € Z, b > 0, we set

Nop={a+nb:necZ}.

Each set N, 3 is a two-way infinite arithmetic progression. Now call a set
O C Z open if either O is empty, or if to every a € O there exists some
b > 0 with N, C O. Clearly, the union of open sets is open again. If
01,0, are open, and a € Oy N Oy with Ny, € Oy and Ny p, C Oy,
then @ € Ny .5, € O1 N Os. So we conclude that any finite intersection
of open sets is again open. So, this family of open sets induces a bona fide
topology on Z.

Let us note two facts:
(A) Any nonempty open set is infinite.
(B) Any set N, is closed as well.

Indeed, the first fact follows from the definition. For the second we observe

b-1
Nop = I\ UNa+i,bs

which proves that N, ; is the complement of an open set and hence closed.

So far the primes have not yet entered the picture — but here they come.
Since any number n # 1, —1 has a prime divisor p, and hence is contained
in No p, we conclude

z\{1,-1} = |JNop.

peEP

Now if P were finite, then ( J,,cp No,, would be a finite union of closed sets
(by (B)), and hence closed. Consequently, {1,—1} would be an open set,
in violation of (A). O

W Sixth Proof. Our final proof goes a considerable step further and
demonstrates not only that there are infinitely many primes, but also that
the series EpelP = diverges. The first proof of this important result was
given by Euler (and is interesting in its own right), but our proof, devised
by Erd6s, is of compelling beauty.

Let p1,po,p3,... be the sequence of primes in increasing order, and
assume that Epep 1 converges Then there must be a natural number &

such that ZD k41 . Let us call py,...,p the small primes, and
Diet1, Dk 42, - - gzg primes. For an arbitrary natural number N we there-
fore find N N
— £ — 1)
i 2

i>k+1

“Pitching flat rocks, infinitely”

P



Six proofs of the infinity of primes

Let Nj, be the number of positive integers n < N which are divisible by at
least one big prime, and N, the number of positive integers n < N which
have only small prime divisors. We are going to show that for a suitable N

Ny+N; < N,

which will be our desired contradiction, since by definition N, + N, would
have to be equal to V.

To estimate N}, note that Lpﬁj counts the positive integers n < N which
are multiples of p;. Hence by (1) we obtain

N N
Mm< Y |F J <2 9
: pi 2
i>k+1
Let us now look at N,. We write every n < N which has only small prime
divisors in the form n = a, b2, where ay, is the square-free part. Every a,,
is thus a product of different small primes, and we conclude that there are
precisely 2k different square-free parts. Furthermore, as b, < y/n < VN ;
we find that there are at most v/N different square parts, and so

N, < 2%V/N.

Since (2) holds for any N, it remains to find a number N with 25/ N <
or 2511 < \/N, and for this N = 225+2 will do.

N
2
O
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Bertrand’s postulate

We have seen that the sequence of prime numbers 2,3, 5,7, ... is infinite.
To see that the size of its gaps is not bounded, let N :=2-3-5- - p denote
the product of all prime numbers that are smaller than & + 2, and note that
none of the k numbers

N+2,N+3,N+4,....N+k,N+(k+1)

is prime, since for 2 < i < k + 1 we know that ¢ has a prime factor that is
smaller than & + 2, and this factor also divides N, and hence also N + .
With this recipe, we find, for example, for k¥ = 10 that none of the ten
numbers

2312,2313,2314,...,2321

is prime.

But there are also upper bounds for the gaps in the sequence of prime num-
bers. A famous bound states that “the gap to the next prime cannot be larger
than the number we start our search at.” This is known as Bertrand’s pos-
tulate, since it was conjectured and verified empirically for n < 3 000 000
by Joseph Bertrand. It was first proved for all n by Pafnuty Chebyshev in
1850. A much simpler proof was given by the Indian genius Ramanujan.
Our Book Proof is by Paul Erdés: it is taken from Erdds” first published
paper, which appeared in 1932, when ErdGs was 19.

Bertrand’s postulate. )
For every n > 1, there is some prime number p withn < p < 2n.

B Proof. We will estimate the size of the binomial coefficient (?1‘:) care-

fully enough to see that if it didn’t have any prime factors in the range
n < p < 2n, then it would be “too small.” Our argument is in five steps.

(1) We first prove Bertrand’s postulate for n. < 4000. For this one does not
need to check 4000 cases: it suffices (this is “Landau’s trick™) to check that

2,3,5,7,13,23,43,83,163, 317,631, 1259, 2503, 4001

is a sequence of prime numbers, where each is smaller than twice the previ-
ous one. Hence every interval {y : n < y < 2n}, with n < 4000, contains
one of these 14 primes.

Chapter 2

Joseph Bertrand

Beweis eines Satres von Tachebyschef
¥om P, Exods le Budspest

Filr Gen auerdt von TeOsemescner bewleensn Sats, Gt
desien et rwischen einer natidichen Zald wnd iheer zweifachen
stets wenigstens eine Primzahl gibt, licgen in der Literatur meheere
Bewreise: var. Als einfachsten kann man choe Zwelldl den Rewsiy
vost Rasantgant) heseichnen. by setem Week Vorbswmgen dber
Zadlentheorte (Leipaig, 1927), Band 1, §. 6868 gitt Herr Lasamy
eitren besonders sinfachien Beweis fur cinen Satz uder die Anzahl
der Primueablen wnter cmer gegobonen Gronze, sus woichon une
mitleibar folgt, dab fir oin { awischen eines natirlich
Zahl el fhrer g-fachen edels gor Primoatl Negl Foe die sugen-
bicklichen Zwecken des Hewen Lasoau kommd es michl auf die

g der im Beweis K
an; man Uberseugt seh aber durch eise pamerische Verfolgung
dez Bewnises loicht, dal ¢ jedenfally pebier als 2 susflle

b des folgesden Zellen werde ich scigen, daf man durch
virer Verschiefung der dem Lanoauschien Bewels nugrunde Yiogen.
den dven 2y cinem Bewels des oben erwifinten TECREBVSCHEP
scien Sates geangen kusy, der o wie mir scheint o an Eiee
tgettkeit nichy Biter ddens Rasanuzanschen Beweis stebt Ciriechisehe
Buchetaben solien fie Polgenden durchwegs posliive, Tnteinieche
Buchstaber naltieliche Zahlen beseicknen; die Bexelehnung p it
far Primpabien vorsehalien.

L Der Binomustkoeffiziont

2a)__ (24!
(al=iF

TR Rawawusan, A Proof ot Berrwd's Sossitate, esnad of the b
dite Mathemationl Sociedv, 1 (118 & M-8 — Cofieted Pupess of
Sewivans Rawaxwan {Canbridge. 10, 8 2824



Bertrand's postulate

Legendre’s theorem

Yhé‘number n! contains the prime
factor p exactly

>l

k>1
times. o

W Proof, Exactly | 2 | of the factors
of nl =1:2-3--.nare divisible by
p, which accounts for [%J p-factors.
Next, [;}j of the factors of n! are
even divisible by p?, which accounts

for the next |_I—:',j prime factors p
of nl, etc. . o E

(2) Next we prove that

Hp < 471

p<z

forallreal z > 2, (1)

where our notation — here and in the following — is meant to imply that
the product is taken over all prime numbers p < z. The proof that we
present for this fact uses induction on the number of these primes. It is
not from Erd6s’ original paper, but it is also due to Erdds (see the margin),
and it is a true Book Proof. First we note that if g is the largest prime with

q < z, then
Mr=Tr

p<z P<q
Thus it suffices to check (1) for the case where z = ¢ is a prime number. For
g =2 we get “2 < 4, so we proceed to consider odd primes g = 2m + 1.
(Here we may assume, by induction, that (1) is valid for all integers z in
the set {2,3,...,2m}.) For ¢ = 2m + 1 we split the product and compute

m2m+1 mo2m _ 42m
[Tr= II» Hps4( ” )S422 = 4"

p<2m+1 p<m+1 m+1<p<2m+1

4q—l < 4.12—1.

All the pieces of this “one-line computation” are easy to see. In fact,
I[Ir<em
p<m+1
holds by induction. The inequality

H p < (2mn;1~1)

m+1<p<2m+1

. 1. .
follows from the observation that (2":: 1) = % is an integer, where

the primes that we consider all are factors of the numerator (2m + 1)!, but
not of the denominator m!(m + 1)!. Finally

(2m + 1) < gm

m

(2m+ 1) <2m+1)
and
m m+1

are two (equal!) summands that appear in

ngl <2m+1) -
)=

k=0

holds since

(3) From Legendre’s theorem (see the box) we get that (2:) = %),-' con-
tains the prime factor p exactly

()



Bertrand’s postulate

times. Here each summand is at most 1, since it satisfies

2n n 2n n
els < m e -

and it is an integer. Furthermore the summands vanish whenever p* > 2n.
Thus ( ) contains p exactly

qu _2{11 J) < max{r:p" < 2n}

k>1

times. Hence the largest power of p that divides (*") is not larger than 2n.

In particular, primes p > v/2n appear at most once in (2“)

Furthermore — and this, according to Erdds, is the key fact for his proof
— primes p that satisfy 2n < p < n do not divide (*") at all! Indeed,
3p > 2n implies (for n > 3, and hence p > 3) that p and 2p are the only
multiples of p that appear as factors in the numerator of %}, while we get
two p-factors in the denominator.

(4) Now we are ready to estimate ( ) For n > 3, using an estimate from
page 12 for the lower bound, we get

4n
m = ( ) H n H y H p
p<V2n V2n<p<in n<p<2n

and thus, since there are not more than v/2n primes p < /2n,

m<etm o I e [ for 23 @

V2n<p<in n<p<n

(5) Assume now that there is no prime p with n < p < 2n, so the second
product in (2) is 1. Substituting (1) into (2) we get

4n S (Zn)l+\/2_ﬂ4%n

or
43" < (2n)1+~/2_n’ 3)

which is false for n large enough! In fact, using @ + 1 < 2% (which holds
forall a > 2, by induction) we get

o = (Y2n)° < (| ¥2m] +1)° < 2LV) <89 )
and thus for n > 50 (and hence 18 < 2v/2n) we obtain from (3) and (4)

g2n < (2n)3(1+\/ﬁ) < oVan(18+18vn) _ 920 2mvan _ 920(20)*°

This implies (2n)'/® < 20, and thus n < 4000. O

Examples such as

(35 =2"5%.7.17-19-23

() =2°38.5"17.19.23

() =2".8.5-17-19-23-29
illustrate that “very small” prime factors
p < V2n can appear as higher powers
in (*"), “small” primes with v2n <
p < %n appear at most once, while
factors in the gap with 2n < p < n
don’t appear at all.



