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Abstract In this paper, we address the problem of carrier frequency offset (CFO) esti-

mation for Orthogonal Frequency Division Multiplexing (OFDM) communications systems
with multiple antennas. We reconstruct the received signal to form data model with multi-
invariance property, and subsequently derive a multiple-invariance ESPRIT algorithm for
CFO estimation. This algorithm has improved CFO estimation compared to ESPRIT method
and maximum likelihood method. Simulation results illustrate performance of this algorithm.

Keywords Carrier frequency offset (CFO)- Multiple-invariance - OFDM - ESPRIT -
Multiple antennas

1 Introduction

Orthogonal frequency division multiplexing (OFDM) is an efficient technique for high-
speed digital transmission over multipath fading channels [,2]. OFDM has been recently
emerged as a promising technique for future mobile communications. As we all know that
OFDM is highly sensitive to carrier frequency offset (CFO). In general, CFO estimation
algorithm can be divided into two categories: the non-blind CFO estimation methods and
blind CFO estimation methods. The non-blind CFO estimators are based on pilots3f-5] or
on the cyclic prefix (CP) like Maximum Likelihood (ML) carrier-frequency offset estimator
[6]. The blind CFO estimators contain MUSIC method 7], ESPRIT method [8], kurtosis-
based CFO estimator P], constant modulus-based CFO estimator [0], and cyclostationa-
rity-based approach [11]. In contrast to the training-based and pilot-based methods, the blind
CFO estimation methods improve bandwidth efficiency. Among the previous blind method,
[9] assumes non-Gaussian sources, and uses kurtosis to measure non-Gaussianity, and
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504 X. Zhang et al.

[10,11] assume other special properties of the sources, like constant-modulus and cyclo-
stationarity. MUSIC method [/] and ESPRIT method [8] are based on subspace technique
and have the average CFO estimation performance.

Multiple-antenna receiver is useful in OFDM systems for providing receive diversity to
overcome fading [12]. OFDM system with multiple antennas has been used in many com-
munication systems such as Digital Video Broadcasting for Handheld (DVBH)1[3], future
mobile wireless communications [4], and so on. Similar to the single input single output
(SISO) OFDM systems, the multiple-antenna diversity receivers of the OFDM system are
sensitive to carrier synchronization errors. The CFO between the transmitter and the receiver
must be estimated and compensated to ensure subcarrier orthogonality. In this paper, we
address the problem of CFO estimation for OFDM systems with multiple antennas. We
reconstruct the received signal to form data model with multiple-invariance property, and
then multiple-invariance ESPRIT (MI-ESPRIT) algorithm for carrier frequency offset esti-
mation is proposed. Comparing to ESPRIT method and ML method, we derive an algorithm
with better CFO estimation performance.

This paper is structured as follows. Sectior?2 develops data model. Section3 proposes
algorithm. Section4 presents simulation results, and Sect5 summarizes our conclusions.

Note We denote by (.)* the complex conjugation, by (.)” the matrix transpose, and by
() the matrix conjugate transpose. The notation(.) " refers to the Moore-Penrose inverse
(pseudo inverse). || ||  stands for Forbenius norm.

2 Data Model

We consider the uplink of an OFDM system, in which the transmitter has only a sin-
gle transmitting antenna while the receiver is equipped with an array of I antennas. The
number of subcarriers is N and a cyclic prefix of L sampling intervals is used. L is cho-
sen to exceed the maximum delay spread. We denote thekth block to be transmitted by
s(k) = [s1(k), s2(k), ...,sp(K)]T. P parallel data are modulated onto P P < N) subcar-
riers, the rest of which (N — P) subcarriers are virtual carriers. The multicarrier-
modulated signal is padded with a cyclic prefix (CP). The output signal of insertion CP unit
isd(k) = T, Fps(k), where T, is a matrix which is used to add CPFp € CNxP comprises
the first P columns of the inverse discrete Fourier transform matrix. The signal d(k) is trans-
mitted through the multipath fading channel. The received baseband signal of théth antenna
is u; (k), and the output signal of the removing-CP unit ix; (k) = T,,,u; (k), where T,,, is a
matrix which is used to remove CP . We assume that all the receive antenna are affected by the
same CFO.

Define H;(n) = le’"O—l hi(l)e=J2/N a5 the channel frequency response for thenth
subcarrier, corresponding to theith antenna, where {h;(l)}{“:’"o“1 is discrete-time channel
impulse response. The frequency domain channel vector for theith receive antenna is
h; = [H;(1), Hi(2), ..., Hi(P)]T. The frequency domain channel matrix for the multiple
antenna receivers is

H=[hy,hy,...,h; )" eC*? M
The output signal of theith antenna through removing CP is denoted as §]
x; (k) = EF pdiag(h;)s(k)e /2787 ¢=DWN+LD) Q)

@ Springer
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where Af is CFO,E = diag{1, /2727, ... e/ (N-D27Af} ¢ CN*N s CFO matrix, diagth;)
is

H(Q) - 0
diagh)=| : g < |ec™F 3)
0 v H(F)

We assume the channel parameter is constant for K blocks. Define the source matrix

S = [s(1),sQ),....,s(K))T € CK*F.X; = [x(1) x(2) --- xi(K)], which is
denoted as

X; = Adiagh;,)BT, i=1,2,...,1I 4)

whereB = diag(1, e/ 27 A/ WN+D) | oi2nAf(K-D(N+L)}§ ¢ CK*P A = EFp € CN*P,

Equation (4) can be denoted as

X; =AD;H)BT, i=1,2,....1 (5)

where D; (.) is to extract the mth row of its matrix argument and construct a diagonal matrix
out of it. The signal in ©) can also be expressed as trilinear model [ 5]

P
Tkt = 3 Gagbiphip, =1l eslly, B= Lo, = Yyunrs (6)
p=1

where h; , stands for the @, p) element of the matrix H, and similarly for the others. N,
K, I are the number of subcarriers, the blocks of source and the antennas, respectively.
X; =AD;(H)BT, i=1,2,...,1,canbe regarded as slicing the trilinear model in a series
of slices (matrix) along the antenna direction. The symmetry of the trilinear model in6)
allows other matrix system rearrangement, which is

Y, =HD,(A)BT, n=1,2,....N (7)

where Y,,n = 1,2,..., N, can be regarded as the constrycting signal of Eq5. In the
presence of noise, the received signal model becomesY, = HD, A)BT + W,
n=1,2,..., N, where W, is the received noise corresponding to thenth subcarrier.

3 Multiple-Invariance ESPRIT (MI-ESPRIT) Algorithm for Frequency Offset
Estimation

Multiple-invariance ESPRIT algorithm [6] was proposed to handle arrays composed of
multiple identical subarrays. Multiple-invariance ESPRIT, as a generalization of ESPRIT,
employs the property of multiple shift invariance to enhance the performance of the ESPRIT
algorithm.

According to Eq.7, we form the following matrix

Y, HD;(A) H
Y HD,(A) H®

y=| *|= _ BT — , BT (8)
Yy HDy(A) HeN-!
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606 X. Zhang et al.

where ® = diag{e/27Af  @J2n(F+AD | 3275 +AN) s the rotation matrix. According
to multi-invariance property in Eq8, we can use multiple-invariance ESPRIT [ 6] to estimate

frequency offset. For Eq.8, Ry = YY#. We denote the matrix containing the eigenvectors
{fp} 5=1 associated with the P largest eigenvalues ofRy by E

H

H®
E=]|. T )

Hq)N—l

where Tis a P x P full-rank matrix. According to ), we define E; and Ep

H H®
H® Ho?
Ey=]. T, Ex=|. T (10)
i_Iq)N—Z i_lq)N-—l
According to Eq.10,
H H
H® H® .
E,=|. OT = | . TT 'éT=E; T !®T (11)
HoN -2 HpN-2

Define ¥ = T~!®T, and Eq.11 becomes E; = E1 ¥, then ¥ = Esz. Because ¥ and @

has the same eigenvalues, we can use eigenvalue decomposition (EVD) fo¥ to get 5, here
we have

tr(®)

- i 2
SRR

=

eI2mAF _ (12)

where tr(.) denotes the sum of the elements of the principal diagonal of the matrix. The CFO
2T A f can be calculated from (12).

In contrast to ESPRIT, our algorithm has a heavier computational load, which is usually
dominated by formation of the covariance matrix and calculation of EVD. The major com-
putational complexity of our algorithm isO (KI?N? + N3 + P3), while ESPRIT [5] requires
O(KIN? + N° + P).

4 Simulation Results

The noisy received signal model becomesY, = HD,(A)BT +W,, n =1,2,...,N,
where W, is the received noise. The Signal-Noise-Ratio (SNR) is defined as
2
lez\lzl ”HD" (A)BT “ F dB
> IWall%

We present Monte Carlo simulations that are to assess the CFO estimation performance of
our proposed algorithm. The number of Monte Carlo trials is 1,000. We consider OFDM
system with N subcarriers, and a CP with eight sampling intervals is used in this simulation.

SNR = 1010g]0

_@_ Springer
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-2

10 : :
—+— ESPRIT algorithm |3
i e —&— MI-ESPRIT algorithm |
i CP-based ;

MSE

1 1 !

5 10 15 20
SNR/dB

10 ;

Fig.1 CFO estimation performance comparison

The channel is modeled as an FIR filter of length L,, = 4(L,, < L). Aw = 27 Af is fixed
at 0.4w, where w = 27 /N is the subcarrier frequency spacing. To quantify the performance
of the CFO estimation, the mean square error (MSE) of the estimates is used, and it is def-

ined as
M & 2
1 Afm—Af
MSE = — _—
8 MZ( 1/N )

m=1

where A f™ is the estimated CFO of themth Monte Carlo test, M is the number of Monte
Carlo trials, Af is the perfect CFO.

We compare our proposed algorithm against ESPRIT method and ML method (CP-based)
[6]. According to Eq.4, we get

Xe=[X) X5 --- X/]
=A[diag(h1)BT diag(hy)BT .. diag(h,)BT]

The matrix A is with Vandermonde characteristic, and ESPRIT algorithm can be used for
CFO estimation.

Figurel shows the CFO estimation performance comparison with N= 32,P = 20,
K = 100, and I = 4, where N, I, K and P are the number of the total subcarriers, antennas,
signal blocks, and subcarriers which are used to transmit data, respectively. From Figd., we
find that in contrast to ESPRIT method and CP-based method, CFO estimation performance
of our proposed algorithm is improved. Our algorithm, which employs the multi-invariance
property, has the better capability to suppress noise than single-invariance ESPRIT.

Figure?2 presents the mean square error performance of the CFO estimation in different
data block numbers. N= 32, P = 20 and I = 4 are used in Fig.2. From Fig.2 the CFO
estimation performance of our proposed algorithm is improved with K increasing.

Figure3 shows the performance of the CFO estimator with different numbers of receive
antennas. N= 32, P = 20 and K = 100 in this simulation. From Fig3, the CFO estimation

@ Springer
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MSE

1

5 10 15 20
SNR/dB

Fig. 2 CFO estimation performance at different values of K

—8H— 2 antennas
------- 4 antennas
—— 6 antennas
8 antennas i

TH Y
» 10
=
10°}
10-8 L ! 1 1
5 10 15 20
SNR/dB

Fig. 3 CFO estimation performance with different antennas

performance of our proposed algorithm is improved with the number of antennas increasing.
Multiple receive antennas improve CFO estimation performance because of receive diversity
gain. However, when I > 4, the increment in diversity gain is often slowed down with the

number of antennas increasing.

Figure4 presents the performance of the CFO estimator with N= 32,1 = 4, K = 100
and different values of P. From Fig4, we find that CFO estimation performance degrades
with P increasing. Since the rank of the matrixA € CV*? increases while the P indicates
increment, then CFO estimation performance gets worsen.
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Fig. 4 CFO estimation performance with different values of P
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Fig. 5 CFO estimation performance with different CFOs

Figure5 shows the performance of CFO estimator with different CFOs. N= 32,
P = 20,1 =4, K = 100 in this figure, and CFO varies from —0.5w to 0.5w. From Fig.5, we
find that our proposed algorithm has very close CFO estimation performance for different
CFOs.

Figure6 presents the performance of the CFO estimator with K= 100, I = 4 and differ-
ent N. The value of N varies, and P = 5N /8 in this figure. From Fig. 6, we find that CFO
estimation performance degrades with N increasing. N is selected 32, 64, and 128. P also
proportionally enlarges when N is being added, then the rank of the matri € C¥*F glso
increases. As a result, the estimation accuracy of matrixA degrades and then CFO estimation
performance aggravates.
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Fig. 6 CFO estimation
performance with different
subcarriers
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5 Conclusions

In this paper, we address the problem of CFO estimation for OFDM communications systems
with multiple antennas. We reconstruct the received signal to form data model with multiple-
invariance property, so multiple-invariance ESPRIT algorithm for carrier frequency offset
estimation is proposed in this paper. This algorithm has improved CFO estimation compared
to ESPRIT method and ML method.
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