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The Theory of Numbers in the Nineteenth Century

34
The Theory of Numbers in the
Nineteenth Century

It is true that Fourier had the opinion that the principal
object of mathematics was public use and the explanation of
natural phenomena; but a philosopher like him ought to
know that the sole object of the science is the honor of the
human spirit and that under this view a problem of [the
theory of] numbers is worth as much as a problem on the
system of the world. C. G. J. JACOBI

1. Introduction

Up to the nineteenth century the theory of numbers was a series of isolated
though often brilliant results. A new era began with Gauss’s Disquisitiones
Arithmeticae® which he composed at the age of twenty. This great work had
been sent to the French Academy in 1800 and was rejected but Gauss
published it on his own. In this book he standardized the notation; he
systematized the existing theory and extended it; and he classified the
problems to be studied and the known methods of attack and introduced new
methods. In Gauss’s work on the theory of numbers there are three main
ideas: the theory of congruences, the introduction of algebraic numbers, and
the theory of forms as the leading idea in Diophantine analysis. This work not
only began the modern theory of numbers but determined the directions of
work in the subject up to the present time. The Disquisitiones is difficult to
read but Dirichlet expounded it.

Another major nineteenth-century development is analytic number
theory, which uses analysis in addition to algebra to treat problems involving
the integers. The leaders in this innovation were Dirichlet and Riemann.

2. The Theory of Congruences

Though the notion of congruence did not originate with Gauss—it appears in
the work of Euler, Lagrange, and Legendre—Gauss introduced the notation

1. Published 1801 = Werke, 1.
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in the first section of Disquisitiones and used it systematically thereafter. The
basic idea is simple. The number 27 is congruent to 3 modulo 4,

27 = 3 modulo 4,

because 27 — 3 is exactly divisible by 4. (The word modulo is often ab-
breviated to mod.) In general, if a, b, and m are integers

a = b modulom

if a — b is (exactly) divisible by m or if a and b have the same remainders on
division by m. Then b is said to be a residue of a modulo m and a is a residue
of b modulo m. As Gauss shows, all the residues of a modulo m, for fixed a
and m, are given by @ + km where k = 0, +1, +2,....

Congruences with respect to the same modulus can be treated to some
extent like equations. Such congruences can be added, subtracted, and
multiplied. One can also ask for the solution of congruences involving
unknowns. Thus, what values of x satisfy

2x = 25 modulo 12?

This equation has no solutions because 2x is even and 2x — 25 is odd. Hence
2x — 25 cannot be a multiple of 12. The basic theorem on polynomial
congruences, which Gauss re-proves in the second section, had already been
established by Lagrange.? A congruence of the nth degree

Ax" + Bx*~! +... + Mx + N = O modulop

whose modulus is a prime number p which does not divide 4 cannot have
more than n noncongruent roots.

In the third section Gauss takes up residues of powers. Here he gives a
proof in terms of congruences of Fermat’s minor theorem, which, stated in
terms of congruences, reads: If p is a prime and a is not a multiple of p then

a*~! = 1 modulo p.
The theorem follows from his study of congruences of higher degree, namely,
x* = amodulo m

where a and m are relatively prime. This subject was continued by many men
after Gauss.

The fourth section of Disquisitiones treats quadratic residues. If p is a
prime and a is not a multiple of p and if there exists an x such that x? = a
mod p, then a is a quadratic residue of p; otherwise a is a quadratic non-
residue of p. After proving some subordinate theorems on quadratic residues
Gauss gave the first rigorous proof of the law of quadratic reciprocity (Chap.

2. Hist. de I’ Acad. de Berlin, 24, 1768, 192 fi., pub. 1770 = Euwres, 2, 655-726.
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25, sec. 4). Euler had given a complete statement much like Gauss’s in one
paper of his Opuscula Analytica of 1783 (Chap. 25, sec. 4). Nevertheless in
article 151 of his Disquisitiones Gauss says that no one had presented the
theorem in as simple a form as he had. He refers to other work of Euler
including another paper in the Opuscula and to Legendre’s work of 1785.
Of these papers Gauss says rightly that the proofs were incomplete.

Gauss is supposed to have discovered a proof of the law in 1796 when he
was nineteen. He gave another proofin the Disquisitiones and later published
four others. Among his unpublished papers two more were found. Gauss
says that he sought many proofs because he wished to find one that could be
used to establish the biquadratic reciprocity theorem (see below). The law
of quadratic reciprocity, which Gauss called the gem of arithmetic, is a basic
result on congruences. After Gauss gave his proofs, more than fifty others
were given by later mathematicians.

Gauss also treated congruences of polynomials. If 4 and B are two
polynomials in x with, say, real coefficients then one knows that one can
find unique polynomials Q and R such that

A=B.Q+R,

where the degree of R is less than the degree of B. One can then say that two
polynomials 4, and 4; are congruent modulo a third polynomial P if they
have the same remainder R on division by P.

Cauchy used this idea® to define complex numbers by polynomial

congruences. Thus if f(x) is a polynomial with real coefficients then under
division by x? + 1

f(x) =a + bxmod x? + 1

because the remainder is of lower degree than the divisor. Here a and b are
necessarily real by virtue of the division process. If g(x) is another such
polynomial then

g(x) = ¢ + dxmod x2 + 1.
Cauchy now points out that if 4,, 4,, and B are any polynomials and if
4, =BQ, + R, and A4; = BQ, + R,,
then
4, + A, = R; + Rymod B, and 4,4; = R,R; mod B.
We can now see readily that
S(x) +g(x) =(a+¢)+ (b +d)xmodx? + 1

3. Exercices d’analyse et de physique mathématique, 4, 1847, 84 fl. = Euwres, (1), 10, 312-23 and
(2), 14, 93-120.
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and since x2 = — ] mod x2 + 1 that
f(x)g(x) = (ac — bd) + (ad + bc)x mod #* + 1.

Thus the numbers a + bx and ¢ + dx combine like complex numbers; that is,
they have the formal properties of complex numbers, x taking the place of 7.
Cauchy also proved that every polynomial g(x) not congruent to 0 modulo
x2 4+ 1 has an inverse, that is, a polynomial A(x) such that h(x)g(x) is
congruent to 1 modulo x? + 1.

Cauchy did introduce i for x, i being for him a real indeterminate
quantity. He then showed that for any

S(i) = ao + ayi + agi® +--
that
f(G) =a, —ay +a, —---+ (a, — ag + ag —---)i modulo i% + 1.

Hence any expression involving complex numbers behaves as one of the
form ¢ + di and one has all the apparatus needed to work with complex
expressions. For Cauchy, then, the polynomials in 7, with his understanding
about i, take the place of complex numbers and one can put into one class
all those polynomials having the same residue modulo 2 + 1. These classes
are the complex numbers.

It is interesting that in 1847 Cauchy still had misgivings about v —1.
He says, “In the theory of algebraic equivalences substituted for the theory
of imaginary numbers the letter i ceases to represent the symbolic sign V' —1,
which we repudiate completely and which we can abandon without regret
since one does not know what this supposed sign signifies nor what sense to
attribute to it. On the contrary we represent by the letter 7 a real quantity
but indeterminate and in substituting the sign = for = we transform what
has been called an imaginary equation into an algebraic equivalence relative
to the variable i and to the divisor 12 + 1. Since this divisor remains the
same in all the formulas one can dispense with writing it.”

In the second decade of the century Gauss proceeded to search for
reciprocity laws applicable to congruences of higher degree. These laws again
involve residues of congruences. Thus for the congruence

x* = gmod p

one can define ¢ as a biquadratic residue of p if there is an integral value of x
satisfying the equation. He did arrive at a law of biquadratic reciprocity
(see below) and a law of cubic reciprocity. Much of this work appeared in
papers from 1808 to 1817 and the theorem proper on biquadratic residues
was given in papers of 1828 and .1832.%

4. Comm. Soc. Gott., 6, 1828, and 7, 1832 = Werke, 2, 65-92 and 93-148; also pp. 165-78.
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To attain elegance and simplicity in his theory of cubic and biquadratic
residues Gauss made use of complex integers, that is, numbers of the form
a + bi with a and b integral or 0. In Gauss’s work on biquadratic residues
it was necessary to consider the case where the modulus p is a prime of the
form 4n + 1 and Gauss needed the complex factors into which prime
numbers of the form 4n + 1 can be decomposed. To obtain these Gauss
realized that one must go beyond the domain of the ordinary integers to
introduce the complex integers. Though Euler and Lagrange had introduced
such integers into the theory of numbers it was Gauss who established their
importance.

Whereas in the ordinary theory of integers the units are +1 and —1
in Gauss’s theory of complex integers the units are +1 and +i. A complex
integer is called composite if it is the product of two such integers neither of
which is a unit. If such a decomposition is not possible the integer is called a
prime. Thus 5 = (1 + 2{)(1 — 2¢{) and so is composite, whereas 3 is a
complex prime.

Gauss showed that complex integers have essentially the same properties
as ordinary integers. Euclid had proved (Chap. 4, sec. 7) that every integer is
uniquely decomposable into a product of primes. Gauss proved that this
unique decomposition, which is often referred to as the fundamental theorem
of arithmetic, holds also for complex integers provided we do not regard the
four unit numbers as different factors. That is, if a = bc = (ib)(—1ic), the
two decompositions are the same. Gauss also showed that Euclid’s process
for finding the greatest common divisor of two integers is applicable to the
complex integers.

Many theorems for ordinary primes carry over to the complex primes.
Thus Fermat’s theorem carries over in the form: If p be a complex prime
a + bi and k any complex integer not divisible by p then

kV?-1 = | modulo p

where Np is the norm (a? + b2) of p. There is also a law of quadratic
reciprocity for complex integers, which was stated by Gauss in his 1828
paper.

In terms of complex integers Gauss was able to state the law of bi-
quadratic reciprocity rather simply. One defines an uneven integer as one
not divisible by 1 + i. A primary uneven integer is an uneven integer
a + bisuchthatbisevenanda + & — liseven. Thus —7and —5 + 2iare
primary uneven numbers. The law of reciprocity for biquadratic residues
states that if « and B are two primary uneven primes and 4 and B are their

norms, then
(g) = (— 1)(:/4)(A-1x1/4xa—1)(é) .
4 a)s
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