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Preface to the English Edition

The first volume of the Chinese edition of this book was published in July 1997, and the
second volume was published in June 2000. In July 2000, upon the readers’ request, we
corrected several typographical errors and republished the first volume.

In this edition, only minor typographical errors are corrected.

We would like to take this opportunity to express our sincere thanks to our teachers,
friends, and readers for their encouragement and support.

Tatsien Li
Tiehu Qin
Shanghai
September 2003



Preface to the Chinese Edition

Partial differential equations are fundamental in many important physical and mechanical
disciplines. ~Although the names of these equations are well known, and they have
been the focus of a considerable amount of research, gaining a comprehensive and deep
understanding of the related physical and mechanical background is not an easy task.
The purpose of this book is to offer some help not only to teachers, graduate students,
and senior undergraduate students engaged in studying, researching, and teaching applied
partial differential equations, but also to scholars and researchers in other disciplines and
application areas. Readers will find the tools to become proficient in the use of important
fundamental equations in modern physics, to gain familiarity with the whys, wherefores,
and derivation of these equations, and to understand some commonly used mathematical
models more easily. They will be able to study and use partial differential equations more
consciously, and also learn to grasp some significant problems in order to properly carry
out their research. Therefore, our purpose in writing this book is to build a bridge between
physics and partial differential equations.

In this book, starting with the most basic concepts of physics, we focus on the
whole process of establishing the fundamental equations for physical and mechanical
disciplines such as electrodynamics, fluid dynamics, magnetohydrodynamics, reacting fluid
dynamics, elastic mechanics, thermoelastic mechanics, viscoelastic mechanics, kinetic
theory of gases, special relativity, and quantum mechanics. At the same time, we give
a brief description of the mathematical structures and features of these equations, including
their types and basic characteristics, the behavior of solutions, and some approaches com-
monly used to solve these equations. We selectively introduce some worldwide research
results from recent years, including those of the authors and their research group. We hope
that readers who are unfamiliar with the related physical and mechanical disciplines can
gain access to the core of these disciplines in an easy-to-digest way so as to complete as
soon as possible their transition from physics to mathematics and from related physical and
mechanical fields to their mathematical models described by partial differential equations.
On the other hand, for readers who are more familiar with the related physical and
mechanical disciplines, we hope that an in-depth understanding of the mathematical
structures and features of the fundamental equations will ultimately reveal the advantages
of effective mathematical tools and expressions to more clearly present the basic contents
of physics; consequently, readers who acquire such an understanding will be able to use
modern mathematical concepts, methods, and tools more purposefully to solve related
physical and mechanical problems.

This book is divided into two volumes, each consisting of five chapters. The contents
of each chapter are relatively independent; however, all of the chapters echo and relate with

ix



X Preface to the Chinese Edition

each other to a certain extent. Exercises and a bibliography are included in each chapter.
Most of the chapters are not meant to be difficult for those readers who have taken basic
undergraduate courses in mathematics and physics. This book can be used as a textbook
for graduate courses or elective senior undergraduate courses, as well as a reference book
or extracurricular reading material.

Since the second half of 1987, the contents of this book have been continuously and
successfully taught in Fudan University as both an elective senior undergraduate course and
a required graduate degree course. The lecture notes have been constantly supplemented
and revised, and it is on these that the final version of this book is based.

The authors would like to thank Higher Education Press for its enthusiastic support of
the publication of this book, and Professor Sixu Guo for careful and meticulous typesetting.
Thanks also go to Dr. Zhijie Cai for his responsible and proficient typing of the entire
manuscript, and to Dr. Yingqiu Gu for his assistance in ensuring all the physical units in
this book conform to the international system of units (SI units). In particular, we are
grateful to Minyou Qi, Professor of Mathematics in the Department of Mathematics at
Wuhan University, and Guangjiong Ni, Professor of Physics in the Department of Physics at
Fudan University. They have carefully reviewed the manuscript and supplied many helpful
comments and suggestions. Their hard work enriched this book.

As mathematicians, the authors may have a superficial understanding of physics to a
certain extent, so errors and omissions are inevitable. We hope that readers will not spare
their comments and corrections.

Tatsien Li
Tiehu Qin
November 10, 1996
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Chapter 6

Thermoelasticity

6.1 Introduction

In Chapter 5, we discussed the deformation and stress of an elastic body under mechanical
loads without considering the impact of temperature change. In fact, a temperature change
in the elastic body will generate additional strain and stress. In this chapter, we will focus
our attention on the impact of temperature change on the deformation of an elastic body;
i.e., we will discuss the laws obeyed by the deformation of a thermoelastic body and its
interior temperature distribution.

What is a thermoelastic body? A thermoelastic body is an object with the following
characteristics: for an object that was originally in the natural state (there was neither defor-
mation nor a temperature gradient inside), the deformation and the change of temperature
field affected by mechanical loads and thermal environment will disappear immediately on
being withdrawn from the mechanical loads and thermal environment, so that the object
is restored to its original natural state with neither permanent deformation nor permanent
temperature gradient.

To obtain the law of deformation and temperature distribution of a thermoelas-
tic body, i.e., to establish the mathematical model of thermoelasticity—the system of
thermoelasticity—the corresponding conservation laws and constitutive relations must
be given, as was done for the elastic body in Chapter 5. Since the conservation laws
of mass and momentum have nothing to do with the temperature change of an elastic
body, the two conservation laws obtained in Chapter 5 are still valid for thermoelastic
bodies. But since temperature changes must be taken into account in the discussion of
thermoelastic bodies, and there is heat transfer among different parts of the thermoelastic
body, in addition to the above two conservation laws, we should establish the corresponding
conservation law of energy. Moreover, from the thermodynamical point of view, heat
conduction is an irreversible process, and the conservation law of energy itself is not
enough to determine whether a process can be carried on or not, so we have to establish
the corresponding entropy inequality. Meanwhile, the quantities involved in the consti-
tutive relations in elasticity are expressed as functions of only the deformation gradient
tensor F', while in thermoelasticity they are functions of the deformation gradient tensor,
the absolute temperature, and the temperature gradient, since the deformation and heat



2 Chapter 6. Thermoelasticity

conduction caused by the temperature and the temperature gradient have to be taken into

consideration.
In this chapter, we will adopt relevant notation as in Chapter 5.

6.2 The Conservation Law of Energy and the Entropy
Inequality

6.2.1 The Conservation Law of Energy

Let © C R3 be the reference configuration of the thermoelastic body, i.e., the domain
occupied by the thermoelastic body before deformation (assumed to be time # = 0). Denote
by = (x1,x2,x3) a point in this domain. At time ¢ (> 0), assume that the domain occupied
by the thermoelastic body turns into €2, from 2. This deformation is described by

y=y(t, o),

where y = (y1,y2,y3) € Q.

For any given domain G; C €2, let us examine the changes in the total energy in G;.
For the elastic body, the total energy is the sum of the kinetic energy and the strain energy.
However, for the thermoelastic body, the strain energy should be replaced by the internal
energy, due to the heat transfer caused by the temperature change among different parts.
Thus, the total energy in G, should be the sum of the total kinetic energy and the total
internal energy. Here the internal energy, of course, includes both the thermodynamic
internal energy and the strain energy.

The total kinetic energy in G; is

f : lv[*d
L oldy,
G'ZP Yy

where p is the mass density and v is the velocity vector. Suppose that the internal energy
per unit mass of the thermoelastic body is e. Then the total internal energy in G, is

f pedy.
G,

From the conservation law of energy, the rate of change of the total energy in G,
should be equal to the sum of the following four parts: the work done by the volume force
in G,, the work done by the stress on the boundary S; of G, the heat produced by the heat
source in G;, and the heat flowing into G, across S; in unit time.

Suppose that the volume force density, i.e., the volume force per unit mass, is b =
(b1,b2,b3). Then the work done by the volume force in unit time is

/ pb-vdy.
Gy

Moreover, the stress on the boundary S; of G, received from the exterior of G; in 2, is
T'v, where T is the Cauchy stress tensor (see section 5.3.5 in Chapter 5) and v is the unit
outward normal vector on S;. Thus, the work done by the stress on S; in unit time is

(Tv)-vdS;.
S
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Suppose that the heat source density of the thermoelastic body, i.e., the heat generated
per unit mass in unit time, is y; then the heat produced by the heat source in G; in unit

time is
/ pydy.
Gy

Suppose furthermore that ¢ = (g1,¢92,¢3)" is the heat flux density vector: its direction is
that of the heat flux, i.e., that of the heat conduction, while its length stands for the heat
across a unit area perpendicular to the direction of heat flux in unit time. Thus, for any
given area element dS; on S;, the heat flowing across dS; along the normal vector v in unit
time is given by

q-vdS;.

Therefore, the heat flowing into G, across S; in unit time is

—f q-vdS;.
S

In summary, from the conservation law of energy we obtain

4 / ' lv|2d +f d
— —plv
a Glzp y Glpey

= (Tu)-'vdS,+/ pb-vdy+/ pydy—/ q-vdsS;. (6.1)
Sy G G, S

From Lemma 5.2 in Chapter 5, we have

d (1 lv]? + )d / s l| >+e)d
= = e = — | zlv
ar Jo, \2° pe | dy . a2 e )dy,

where % =2 4+ -Vy)and V, = (8%1, %, a‘%) Then (6.1) can be rewritten as

[ o2 (e o)
T U R

= (Tu)-vdS,+/ ,ob.'udy+/ pydy—/ q-vdsS;. (6.2)
M G, G, S

This is the integral form of the conservation law of energy under the spatial description (see
section 5.1 in Chapter 5).

To obtain the differential form of (6.2), similarly to Chapter 5, we need to reduce the
surface integral on its right-hand side to the volume integral on the domain enclosed by this
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surface. Assume that the integrands under discussion are smooth. Then by Green’s formula
we have

/(Tu)-vdS,:/ divy(T'v)dy, (6.3)
S G,

/q-udS,:/ divy qdy, (6.4)
M Gy

where div, stands for the divergence with respect to y = (y1,y2,y3). We also used
the symmetry of the Cauchy stress tensor T" when deriving (6.3) (see Theorem 5.2 in
Chapter 5).

Using (6.3) and (6.4), it follows from (6.2) that

f ;( o +e)dy

:/ (divy(Tv) —divy g+ pb-v+ py)dy. (6.5)
G
Since (6.5) holds for any given domain G, C €2;, we have

d 2 . .

dt |v| +e ) =divy(Tv) —divyq+pb-v+py. (6.6)

This is exactly the differential form of the conservation law of energy under the spatial
description.

d 2 dv

dr (—l | ) a

Obviously, we have
div,(Tv) = div, T - v+ Z x,, (6.7)
i,j=1 8 j

and

. ?
where #;; are components of T and div, T = ( j 1 a"’) is a vector (see Appendix A

in Volume I). We used the symmetry of 7" again when obtammg (6.7). Thus, using the
differential form of the conservation laws of momentum obtained in Chapter 5 (see (5.57)
in Chapter 5),

d
pd—"t’ —divy T — pb =0, (6.8)

equation (6.6) can also be rewritten in the following simpler form:

v
p— = Ztij——dlqu+py (6.9)
ij=1 dy;

This is another expression of the differential form of the conservation law of energy under
the spatial description.
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Just as in elasticity, the form of the above equations under the material description
(see section 5.1 in Chapter 5) is the most common one used in thermoelasticity. Let the
domain Gg C 2 in the reference configuration correspond to G; C €2;. In order to obtain
the conservation equation of energy under the material description, we need to reduce the
volume integral with respect to variables (y;, y2, y3) over G; in (6.2) to the volume integral
with respect to variables (x1,x2,x3) over Gy, and the surface integral over S; into the surface
integral over the boundary Sg of G¢. The former can easily be done by the usual substitution
of integral variables and by noticing that

pJ = po (6.10)
(see (5.34) in Chapter 5), where J =det F, and F = (fij), fij = 37”;, while pg represents

the mass density of the thermoelastic body before the deformation (depending only on x,
and independent of 7). For example,

/ 4 (1oeie)d
6 ar\2"" )Y
—/ d 1| ?+e)Jdx
= Jo,Par \2'" T

/ d Lol +e)dx
= — | =|v

Gopodt 2 ¢

—f a( + 2 polol? ) ax 6.1
= " Y poe 2p()'v . (6.11)
Similarly, we have
/pb-vdy:/ pob - vdx, (6.12)
G, Go
/pydy=/ poydx. (6.13)
G; Go

Now we inspect the corresponding change of the surface integral over S; in (6.2).
Noting that

vdS; = JF "ndS, (6.14)
(see (5.63) of Lemma 5.3 in Chapter 5), where n. = (n1,n,n3) is the unit outward normal
vector of Sy, and using the symmetry of T', we have
(Tv) -vdS; = [ (Tw)-vdS,

S S

= f J(Tv)-(F "n)dSy
So

3
=/ Z pijvin jdSo, (6.15)
So

i,j=1
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where p;; are the components of the Piola stress tensor
P=JTF" (6.16)

(see (5.69) in Chapter 5). Similarly, it is easy to see that

fq-UdS,Z/ h -ndSp, (6.17)
M So

where
h=JFq. (6.18)
It is not hard to see that q - v stands for the heat across unit area on S; along v in unit time,

while h - is the heat flux in unit time measured by unit area before deformation (i.e., on
So). Plugging (6.11)—(6.13), (6.15), and (6.17) into (6.2), we then get

9 [ . .»
— = dx
/(;0 ” (poe+ 2,<>0Iv| )

3
=/ Z pijvinjdSo+ pob - vdx
SOi,j:l Go

+ poydx — h-ndSy. (6.19)
Go So

This is just the integral form of the conservation law of energy under the material
description.

To obtain the differential form of (6.19), under the assumption that the integrands are
smooth, we reduce the surface integrals on its right-hand side to the volume integrals over
Gy by using Green’s formula:

3 3
0
/ Z Pijvi"deO=/ Z —(pijvi)dx, (6.20)
So Go i,j=1 ax./

ij=1
/h-ndS():/ div hdx, (6.21)
So Go

where div denotes the divergence with respect to = (x1,x2,x3). Plugging (6.20) and
(6.21) into (6.19), we obtain

9 1 . 5
— - dx
/cn dt <p0e+ gule )

3

il .
=/ Z —(pijvi)—divh+ pob- v+ poy | dx. (6.22)
Go i,j=1 axl
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Since (6.22) holds for any given domain G C €2, we have

LIY . |v|2)
a1 PO 2P0
3

B
= E —(p,jv,)—dlvh—i—pob v+ poy- (6.23)
i,j= l

This is exactly the differential form of the conservation law of energy under the material
description. It is a conservation equation of divergence form.
Using the conservation equations of momentum,

3
ov; .
o = § :ai pobi (i=12,3), (6.24)

obtained in Chapter 5 (see (5.74) in Chapter 5), it is easy to see that (6.23) can also be
written in the following simpler equivalent form:

de
PO = Z pij —divh+ poy. (6.25)

This is another expression of the conservation law of energy under the material description.

6.2.2 Entropy Inequality

Let n be the entropy density, i.e., the entropy per unit mass. Now we consider the change
of entropy in any given domain G; C €2;. From the second law of thermodynamics (see
Appendix B in Volume I) we know that the increment of entropy in G, in unit time is
not less than the sum of the entropy supplied by the entropy source in G, and the entropy
flowing into G, across the boundary S; of G, during this time period.

The total entropy in G; is
f pndy.
G,

The entropy source in G; is exactly the heat source. It is known that the heat produced
by the volume element dy = dy;dy,dys in G, in unit time is pydy, the entropy supplied
by which is pydy/6, where 6 is the absolute temperature of the element dy (see (B.4) in
Appendix B in Volume I). Then the entropy supplied by the entropy source in G, in unit
time is
—dy
Gy
Moreover, it is known that the heat flowing into G, across the boundary area element dS,

in unit time is —q - vdS;, and thus the entropy is —q - vdS, /6. Hence, the entropy flowing
into G, across S; in unit time is

—dS,
St
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From the above analysis and the second law of thermodynamics, we obtain

d

3% q-v
= dy> | Zlay— | £=ds,. (6.26)
a J, P fc,By/s,H :

Applying Lemma 5.2 in Chapter 5 to the left-hand side of the above formula, (6.26) can be
rewritten as

dn Py q-v
—dy> | Zdy— | =—dS,. 6.27
/;;I pdt Y L, 0 ¥ Si [} d ( )

This is exactly the integral form of the entropy inequality under the spatial description.

Under the assumption that the integrand is smooth, reducing the surface integral on
the right-hand side of (6.27) into the volume integral over G, by Green’s formula, (6.27)
can then be written in the following form:

/(;pc(li—?dyZ/(; (%—divy (g))dy. (6.28)

Since (6.28) holds for any given domain G, C €2;, we then have

dp _py . (4
o > v div, (9) . (6.29)
This is exactly the differential form of the entropy inequality under the spatial description.
To obtain the entropy inequality under the material description, we need to reduce
the volume integral and the surface integral in (6.27) to the volume integral over G and
the surface integral on Sp, respectively. Similarly to what we have done to the conservation
equation of energy, (6.27) can be reduced to

an POy h-n
po—dx > ——dx— | ——dSo, (6.30)
,/(;'0 ot Go 0 So 0

where h is defined by (6.18). This is just the integral form of the entropy inequality under
the material description.

Reducing the surface integral on Sy on the right-hand side of (6.30) to the volume
integral over Go by Green’s formula, (6.30) can also be rewritten as

an poy . (h
—dx > —— —div| — ) ) dx. :
Gopoat ‘/(‘;0< 9 iv 9 (6.31)
Since (6.31) holds for any given domain Gy C 2, we then have
on _poy .. (h
— > =" —div(— ). .
£0 o1 9 div (9 (6.32)

This is just the differential form of the second law of thermodynamics under the material
description—the entropy inequality, also called the Clausius—Duhem inequality.



