TUP-Springer [

Jiaheng Lu

XMLEEERFEREAR

An Introduction
to XML Query
Processing

and Keyword
Search

i”,i) BAERSEHRA | @ Springer

Jiaheng Lu

XML EE TR

An Introduction
to XML Query
Processing

and Keyword
Search

(B) AR @\ Springer

b

SN

ARG AT A T T XML B Ay 2 A0 2) g 1 Jeg B (I 7 Bk, £046 XML
BEmgmis. &5l BLAS, 48040 KRR, ShXSETHNE. A5BE
TEGRI A A SEHEE, K BRI XML s S AR R o BOR i s ok, b 3
BN FIE RN TFRF . AREEMERGEITRA G, SHUEMFT TS, tn]ftiifb
B R, Xk N o I BOR 2 % Bk

MAERE, RRLR. RINEERBEIE: 010-62782989 13701121933

BB EMY B (CIP) 3

XML i I FTEE Z A = An introduction to XML query processing and keyword
search: ¢ 3 / Bl ZA1E 4. - Jbat: A% ARG, 2013
ISBN 978-7-302-28563-2

[.OXe I OFfie++ L OFEERIR ARG — 0l £ —il 5 — PPk — 93
IV. ©G354.4-39

o [i AS B CIP i 4% 7-(2013) 38 301916 5

RIEHE: UK
HE: fTRE
RIERX: B #F
RAEEDH]: KA

HAREIT: W A
%] tit: http://www.tup.com.cn, http:/www.wgbook.com
o b JERUEERFFUIRE A R HE 4: 100084
i 2 #l: 010-62770175 BB M: 010-62786544
BESIEHERS: 010-62776969, c-service@tup.tsinghua.edu.cn
RERIR: 010-62772015, zhiliang@tup.tsinghua.edu.cn

B Il AR e B R]

$H: AEBHES

Z: 153mmx 235mm EP3Kk: 19 . 329 TF

W 2013412 HE 1 Rie EDR: 2013 412 H 55 1 IRENRY

#: 1~ 1000

#r: 99.00 JC

P S 035424-01

To my wife Chun, my daughter Anqi and my parents with all my love.

Preface

XML is short for eXtensible Markup Language, whose purpose is to aid information
systems in sharing structured data, especially via the Internet, to encode documents,
and to serialize data. The properties that XML inherited make it the widely popular
standard of representing and exchanging data.

When working with those XML data, there are (loosely speaking) three different
functions that need to be performed: adding information to the repository, searching
and retrieving information from the repository, and updating information from the
repository. We focus on all three parts of functions. There are two decades since the
beginning of XML, and this field has expanded tremendously and is still expanding.
Thus, no book on XML can be comprehensive now—certainly this one is not. We
just present which we could present clearly.

What Is the Uniqueness of This Book?

This book aims to provide an understanding of principles and techniques on XML
query processing and XML keyword search. For this purpose, progress has been
made in the following aspects:

Firstly, we give a brief introduction of XML, including the emergence of XML
database, XML data model, and searching and querying XML data. In order to
facilitate query process over XML data that conforms to an ordered tree-structure
data model efficiently, a number of labeling schemes for XML data have been
proposed.

Secondly, we proposed several XML path indexes. Over the past decade, XML
has become a commonly used format for storing and exchanging data in a wide
variety of systems. Due to this widespread use, the problem of effectively and
efficiently managing XML collections has attracted significant attention. Without a
structural summary and an efficient index, query processing can be quite inefficient

vi Preface

due to an exhaustive traversal on XML data. To overcome the inefficiency, several
path indexes have been proposed, such as prefix scheme, extended Dewey ID, and
CDBS.

Thirdly, answering twig queries efficiently is important in XML tree pattern
processing. In order to perform efficient processing, we introduce two kinds of join
algorithms, both of which play significant roles. Also, solutions about how to speed
up query processing and how to reduce the intermediate results to save spaces are
present.

Fourthly, we show a set of holistic algorithms to efficiently process the extended
XML tree patterns. Previous algorithms focus on XML tree pattern queries with
only P-C and A-D relationships. Little work has been done on extended XML tree
pattern queries which contain wildcards, negation function, and order restriction, all
of which are frequently used in XML query languages. The holistic algorithm will
make it more completed.

Fifthly, we study XML keyword search semantics algorithms and ranking
strategy. We present XML keyword search semantics such as SLCA, VLCA, and
MLCEA, which is useful and meaningful for keyword search. Based on some of
the semantics, we present XML keyword search algorithms such as DIL Query
Processing Algorithm. In addition, we introduce the XML keyword search ranking
strategy; we propose an IR-style approach which basically utilizes the statistics of
underlying XML data to address these challenges.

Sixthly, we introduce the problem of XML keyword query refinement and offer a
novel content-aware XML keyword query refinement framework. We also introduce
LCRA, which provides a concise interface where user can explicitly specify their
search concern—publications (default) or authors.

Lastly, we present several future works, such as graphical XML data processing,
complex XML pattern matching, and MapReduce-based XML query processing.

Jiaheng Lu

Acknowledgement

I would like to express my gratitude to Prof. Tok Wang Ling in National University
of Singapore, for his support, advice, patience, and encouragement. He is my PhD
advisor and has taught me innumerable lessons and insights on the workings of
academic research in general.

My thanks also go to Prof. Mong-Li Lee, Prof. Chee Yong Chan, and Prof.
Anthony K H. Tung in National University of Singapore, who provided valuable
feedback and suggestions to my idea.

I shall thank my colleagues Prof. Shan Wang, Prof. Xiaoyong Du, Prof. Xiaofeng
Meng, Prof. Hong Chen, Prof. Cuiping Li, and Prof. Xuan Zhou in Renmin
University of China, who give me tremendous supports and advices on my research
on XML data processing.

My thanks also go to my friends Ting Chen, Yabing Chen, Qi He, Changqing
Li, Huanzhang Liu, Wei Ni, Cong Sun, Tian Yu, Zhifeng Bao, and Huayu Wu in
National University of Singapore. They have contributed to many interesting and
good spirited discussions related to this research. They also provided tremendous
mental support to me when I got frustrated at times.

My thanks also go to my students Chunbin Lin, Caiyun Yao, Junwei Pan,
Haiyong Wang, Si Chen, Siming Yang, and Xiaozhen Huo in Renmin University of
China. My thinking on XML was shaped by a long process of exciting and inspiring
interactions with my students. I am immensely grateful to all of them.

I would also like to thank Dr. Jirong Wen, Microsoft Research Asia; Prof. Rui
Zhang, Melbourne University; Prof. Jianzhong Li, Harbin Institute of Technology;
Prof. Bin Cui, Peking University; Prof. Jianhua Feng and Prof. Guoliang Li,
Tsinghua University; and Mr. Hanyou Wang and Ms. Hui Xue, Tsinghua University
Press, for their recommendation and valuable suggestions.

Last, but not least, I would like to thank my wife Chun Pu for her understanding
and love during the past few years. Her support and encouragement was in the end
what made this book possible. My parents and parents-in-law receive my deepest
gratitude and love for their dedication and the many years of support during my
studies.

vii

viii Acknowledgement

My research is partially supported by National 863 project (2009AA01Z133);
National Science Foundation, China (61170011); Beijing National Science
Foundation (109004); and Research Funds of Renmin University of China (No:
11XNJ003).

Jiaheng Lu

Contents

1

3

Introduction 1
1.1 XML DataModeloooiiiiiiiiiiiiiiii i 1
1.2 Emergence oL XML Database cawsesse s susmemos e smamon s s omsne s s ws 3
121 Flat File:StOrage . vanmurs s s swsinsies o sumaians s s wramos 3 5 sarsois & 4 3
1.2.2 Relational and Object Relational Storage 3
1.2.3 Native Storage of XML Dataocoooiiiiiiinnn. 4
1.3 XML Query Language and Processingcooovveeiaa... 5
1.4 XML Keyword Searchoooiiiiiiiiiiiiiiiiiiiiiiiiieaeeae 5
1.5 BOOK OULHNE ...ttt 6
REFETENCES s ¢ o svimisrs s soiwmasss § s Si/s@atiss § 5 5 ISEORTS ¢ SSEETES 5 WFPEES £ 5 EEEWEET 35 28 7
XML Labeling Scheme ...l GRS 4§ RAERERA £ 55 9
2.1 Introducing XML Labeling Schemec.ooiiiiin. .. 9
2.2 Region Encoding Scheme ... 10
2.3 Dewey and Extended Dewey Scheme....................oooiiiet. 11
2.3.1 Dewey ID Labeling Schemecccooiiiiiiiinnnnn. .. 11
2.3.2 Extended Dewey and FST ..., 12
2.4 Dynamic Labeling Schemecccoooiiiiiiiiiiiiiiiiiiiiiiien. .. 16
24.1 Region-Based Dynamic Labeling Scheme 17
24.2 Prefix-Based Dynamic Labeling Scheme 18
243 Prime Labeling Scheme ..., 19
2.44 The Encoding Schemesccooviiiiiiiiiiiieieaaenia.. 20
2,9 OMIIAT oo« 3 oo s sapariens § SomiFsee § Seampses 3 SEERGe 2 ¥ SSSRET § yary 31
RELETENCES ; : : svwwin o s wosmmms § 5 cammmmnss SOaees § » ya@aais s « pAERSES 4 & SEREEN = 30 31
XML Data INAEXING ...qqu.coovmase oo oot e sanmusns s nasmsins s s astissns s s <o 33
3.1 Introducing XML Data Indexingcooiiuiiiiiiiiiiiiiinnnn.. 33
3.2 Indexes on XML Tree Structureuuiiiiiiiiineieeneeienennnns 34
321 DataGuidesooiiiiiiiiiiii i 34
322 T-INAEX e e 39
323 F&B-Index...........cooiiiiiiiiiiiiiiiiiiiii i 43

Contents

3.3 Index Based on XML Sequencingcooieiiiiniiiiinieeainns 54
3.3.1 PRIX: Indexing and Querying XML Using
Priifer SSUENCES wey: s saveswn s s wiveman s s wsnais o « cvwieiars s o vomoimie 54
3.3.2 ViST: A Dynamic Index Method for Querying
XML Data by Tree Structurescceevevrininnneeeennn. 65
3.3.3 APEX: An Adaptive Path Index for XML Data 75
3.4 SUMDMALY «.oonecvmmonssomonons ssmsioesss s vasisns s s s famaiss s s nawmiss s o o sisies 87
REFEIEICES .. vttt ettt et et ettt ettt 88
XML Tree Pattern Processingc.ooooiiiiiiiiiiiiiiiiiieeeaann. 91
4.1 Introducing XML Tree Pattern Processing 91
4.2 XML Structural JOIn .. « s camasi s s ¢ samens s o sawsmss 5 exgamms ¢ sawsinas s 6 gome 92
4.2.1 Tree-Merge Join Algorithms..............oooeviiiiiiiiinn, 94
4.2.2 Stack-Tree Join Algorithms.........ccooiiiiiiiiiiiiiiiinnn. 97
4.3 XML Holistic Twig Pattern Processingcoooivieeiiiin. 103
4.3.1 PathStackoooiiiiiiiiiii i 104
432 TWIgStaCK ..o ittt 108
433 TwigStackListoooiiiiiiiii i 112
434 TIHASE . s saswu s s passws § § svhinsss s soiimees s § yusend s pemoss s s s aws 122
4.3.5 Experimental Evaluation................ooovvvviiiiinn.. 128
4.4 XML Query Processing Based on Various Streaming Schemes 134
4.4.1 Tag+Level Streaming and Prefix-Path Streaming (PPS).... 135
4.42 iTwigJoin Algorithm 144
4.5 SUMMATY ottt e 155
REFETENCES o+ 5 smprmnis s v sataimaws s s somianss s s smintoai s 5 s sisomis s 6 guisroors o » & ETFHE 3 0 £33 155
Ordered and Generalized XML Tree Pattern Processing 157
5.1 Introducing Ordered and Generalized XML Tree Pattern Processing 157
5.2 XML Ordered Query Processingccooueuveeeiiiiinnnnneeannn. 158
5.2.1 Data Model and Ordered Twig Pattern 159
5.2.2 XML Ordered Query Processing Algorithm................. 160
5.2.3 Analysisof OrderedT] ..., 163
5.2.4 Experimental Evaluation..............c.oooiiiiiiiiiiiiiian, 165
5.3 XML Generalized XML Tree Patternccoooiiiiiininnan.. 167
5.3.1 GTJFast Algorithim .cs . conunassesismnssssaimnnssssnsssss sms 168
532 Analysis Of GTIFast.......ooouiiiiiiiiiiiiiiiiiiieeaeeea 171
5.3.3 EXPETIMENtS ...cuuuiiiniiiiiiiiie it iiee e 173
5.4 Extended XML Tree Pattern............uuuiiiiiiiiiiiiiiiiiaiaieeans 174
5.4.1 - Extended Tree Pattern Querycevvuviinunnnnnnn.. 176
542 Matching Cross .. oovee s s voswsine s s susmmne s pimoss s s ywssees s § s v 177
54.3 Holistic AIZORIAS. .. s suosisws « s comteies s swnmiaws s 5 sammsses s § s 183
544 EXPEIIMETS .. : comvuiss s smmoes s s s asmissio s 5 o soiwiitie s & sais@iagis 3 § auisis 193
5:5 SOMMATY twsi s o s somasins e s axmas s o s Ssmmisii s s s ss@0s 4 6 § G4 83 50904 5 3 5505 200

REFETENCES « « o s « 5 swovaionis s & 6ariioss 3 5 503550500 5 5 5inlbdebs § 5 SHEA05 8 6 bibiiond § 5 bisis 200

Contents xi

6 Effective XML Keyword Search ... 203
6.1 Introducing Effective XML Keyword Search.......................... 203
6.2 XML Keyword Search Semanticscooceiiiiiiiiiiiineannn... 204

6.2.1 LCA and the Meet Operatorcooevuuuueeieeeannnn. 205
6.2.2 MLCA and MLCAS .iv.qonsemssssnmensss s snswass s samosaessss 205
6.2.3 SLICA. ::cnamanes s cavinians ¢ Lavonsieos s SSamRks § SHEemes § § sbemaes 55 s 206
624 GDMUECT . .counnessimaniss s samusns s samsmmas § SEawes s § wimeses s 83 207
6.2.5 ICA (Interested Common Ancestor) and IRA
(Interested Related Ancestors).......covueeeeueeinneeunnnnnn. 209
6.2.6 ELCA (Exclusive Lowest Common Ancestor) 210
6.2.7 VLCA (Valuable Lowest Common Ancestor) 210
6.2.8 MON L 211
6:2.9 Meaningful SLCA i ccui . s smmsss s s vsmsnss s samavss o s snsaiaps s 46 211
6.2.10 LCEA (Lowest Common Entity Ancestor) 213
6.2.11 MLCEA (Meaningful LCEA) ..., 213
6.3 XML Keyword Search Algorithms...................oooiii. 213
6.3.1 DIL (Dewey Inverted List) Query Processing Algorithm ... 213
6.3.2 The Stack Algorithm 216
6.3.3 Basic Multiway-SLCA Algorithm (BMS) 218
6.3.4 Incremental Multiway-SLCA Algorithm (IMS) 220
6.3.5 Indexed Stack ALGOTithiny. .ccocsus s ssmmamss summames « somsmsss s an 221
6.3.6 Stack-Based Query Refinement Algorithm 223
6.4 XML Keyword Search Ranking Strategyocooenae. 224
6.4.1 TF*IDF Cosine Similarityoooiiiiiiiiiiiiiiaan, 225
6.42 DataModel ... 226
6.43 XML TF&DF.... ..o 226
6.4.4 Inferring the Node Type to Search For 227
6.4.5 Inferring the Node Types to Search Via 227
6.4.6 Capturing Keyword Co-0CCUITENCEovvuvunninnnnnnnn... 228
6.4.7 Relevance-Oriented Rankingoooiiiiiiiiiii... 228
6.5 SUMMATY ..ottt e 231
REfEIeNCES .. ottt 231

7 XML Keyword Pattern Refinement.. 233
7.1 Introducing XML Keyword Pattern Refinement....................... 233
72 Related Work i s sosssess s o ssvans s ¢ aavmns s aaiswains < s sawsei s » s5wns 5 5 455 237
Ti3 Preliminaries .os:coieisss snivisssssiseies s ansvmses sonsns o s nmmosms s one 238

7.3.1 Meaningful SLCA 238
7.3.2 Refinement Operationsovvviiiiieniininnnnnnnnnn. 240
7.4 Ranking of Refined Queries ..., 242
7.4.1 Similarity Score of aRQ ... 243
7.4.2 Dependence Score of aRQoooiiiiiiiiiiiiiiii, 245
7.5 Exploring the Refined Querycoooiiiiiiiiiiiiiiiiiiiinn... 247
7.5:1 Problem Formulation.: . covvess s ssnsmios s s samisnios s snosmass s smsn 247

7.52 Subproblems.........c.coiiiiiiiiiiiii i 247

xii

Contents

T.5.3 NOCALONS:.. . . cooimsire e rssivnss s s ssmsmss § 5 soiuss o o 8 sapians s 5 snsiaceis 247
7.5.4 Initializationccovviiiiiiiiiiiiiiiiiiiiiiieae e 248
7.5.5 Recurrence Functionccoviiiiiiiiiiiiiiinnieinn. 248
7.5.6 Time Complexitycoovviiiiiiiiiiiiiiiiiiieiiieeann, 248
7.6 Content-Aware Query Refinementoooiiiiiiiin... 249
7.6.1 Partition-Based Algorithmccooviiiiiin, 250
7.6.2 Short-List Eager Algorithm............c.oooiiiiiiienaiin 253
7.7 EXPEIIMENES . ..uncnensmnecionssinaianisssiosunessssmsian s s saisiains s o suissis 256
7.7.1 EqQUIPMENtoointiiiiiiiiii i 256
7.7.2 Datasetand Query Set..........coovviiiiiiiiiiiiiiiiii, 256
7.7.3 Efficiency ...ocuuvvriiiiiiiiiiiiiiiiii e 257
7.7.4 Scalability.......c.ovveeiiiiiiiiiii e 259
7.7.5 Effectiveness of Query Refinement........................... 261
T8 SUMMALY w60 1 s smnimss s 3 oumamss § 5 osmaints § & £ssbs s § Haans § & Sonseas v someres 264
REFEIEIICES: : ¢ w3 5 5 335E073 5 5SS § 5 o,6eiHs § & SEPWES § § SRETEES ¢ § HERIAS ¢ 0 Toipiossss 264
LCRA, XML Keyword Search System, and LotusX,
Graphical Query Processing System.......................ooo 267
8.1 Introduction of LCRA and LotusX.........coooiiiiiiiiiiiiiiinnnnnn... 267
8.2 LCRA: Search Semantics.........coovvviiiiiiiiiiiiiiiiiiiiiiiniaee.n. 268
821 SLCA GHALRA s oo smaerss pwssns s s vowiees s s mewpssns s § mosss 268
8.2.2 Background and DataModelooooia 269
8.23 Search SemantiCsiis: s ssewns s camvnss + & smonmes § § yetsmems s § woes 270
8.3 LCRA, System Architecture, and Ranking Techniques 272
8.3.1 Tree Model........uuiiiiiiiiiii e 272
8.3.2 Ranking Techniques.............cooiiiiiiiiiiiiiiiiiiiinn. 273
8.3.3 System ArchiteCture...........ccooevviiiiiiiieiiiiiiinnnnn... 274
8.3.4 Overview of Online Demo Features 274
8.4 A Position-Aware XML Graphical Search System
with AUto-cOMPIEHION. . suusan s+ swmens s s 5 s s + 5 s 5 8 smpiuass § § s 276
8.4.1 System Featurescoovviiiieiiiiiiiiiiiiiiiiieniiiinn. 276
8.4.2 LotusX: Architecture and Algorithms........................ 278
8.5 SUMMATY ..ot 282
REFEIEIICES ..ttt e 283
Summary and the Road Ahead ... 285
9.1 Sommary:0f ThiS BOOK .omes s s swsssse s s vomnms o ¢ evamuws s § vamsges § 8 sswas 285
9.2 Puture WOIK: ;. : oswes s s comimen s 5 coiowreivn s § s 500060 5 ¢ 5 Sunielss § 8 salemialos s 3 Héshione 286
9.2.1 Full-Fledged XML Query Enginec..cooovviinnne.. 286
9.2.2 Directed Graph XML Model..................ooooiio.t. 286
9.2.3 Extended Dewey Labeling Scheme for Ordered Query 287
9.2.4 Index Structure Based on TJFastccooiiiiin... 287
9.2.5 MapReduce-Based XML Twig Pattern Matching 288
RETETEICES! & smimwa s 55 onmsian v 5eaiams + 5 ¢ SuTared s ¥ nEEEEEg & § $UaNTD 5 SvSTTHS § 3 SHole 288

Chapter 1
Introduction

Abstract When working with those XML data, there are three different functions
that need to be performed: adding information to the repository, searching and
retrieving information from the repository, and updating information from the
repository. A good XML database must handle those functions well. In this chapter,
we will introduce solutions for XML database, including flat files, relational
database, object relational database, and other storage management system.

Keywords Relational database ¢ Object relational database

1.1 XML Data Model

An XML document always starts with a prolog markup. The minimal prolog
contains a declaration that identifies the document as an XML document. XML
identifies data using tags, which are identifiers enclosed in angle brackets. Collec-
tively, the tags are known as “markup.” The most commonly used markup in XML
data is element. Element identifies the content it surrounds. For example, Fig. 1.1
shows a simple example XML document. This document starts with a prolog
markup that identifies the document as an XML document that conforms to version
1.0 of the XML specification and uses the 8-bit Unicode character encoding scheme
(Line 1). The root element (Line 2—14) of the document follows the declaration,
which is named as bib element. Generally, each XML document has a single root
element. Next, there is an element book (Line 3—13) which describes the information
(including author, title, and chapter) of a book. In Line 9, the element text contains
both a subelement keyword and character data XML stands for. . ..

J. Lu, An Introduction to XML Query Processing and Keyword Search, 1
DOI 10.1007/978-3-642-34555-5_1,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

2 1 Introduction

1. <2xml version = "1.0" encoding = “UTF-8"7>
2. <bib>

3. <book>

4. <author>Suciu</author>

5. <author>Chen</author>

6. <title> Advanced Database System </title>
7. <chapter><title>XML</title>

8. <section><title>XML specification</title>
9. <text><keyword>markup</keyword> XML stands for...
10. </text>
11. </section>
12. </chapter>
13. </book>
14. </bib>

Fig. 1.1 Example XML document

bib
bolok
author author title chapter
“Suciu” “Chen” “Advafinced...” title sectiqn

“XML™ title text
“XML" keyword “XML stands for...”

“markup”

Fig. 1.2 Example XML tree model

Although XML documents can have rather complex internal structures, they can
generally be modeled as trees,! where tree nodes represent document elements,
attributes, and character data and edges represent the element—subelement (or
parent—child) relationship. We call such a tree representation of an XML document
as an XML tree. Figure 1.2 shows a tree that models the XML document in Fig. 1.1.

XML has grown from a markup language for special purpose documents to
a standard for the interchange of heterogenous data over the Web, a common
language for distributed computation, and a universal data format to provide users
with different views of data. All of these increase the volume of data encoded
in XML, consequently increasing the need for database management support for
XML documents. An essential concern is how to store and query potentially huge
amounts of XML data efficiently [AJP+02, AQM+97, JAC+02, LLHC05, MW99,
ZND+01].

'For the purpose of this book, when we model XML document as trees, we consider IDREF
attributes as not reference links but subelements.

1.2 Emergence of XML Database 3
1.2 Emergence of XML Database

XML has penetrated virtually all areas of Internet-related application programming
and become the frequently used data exchange framework in the application areas
[Abi97, CFI+00, DFS99]. When working with those XML data, there are (loosely
speaking) three different functions that need to be performed: adding information
to the repository, searching and retrieving information from the repository, and
updating information from the repository. A good XML database must handle those
functions well. Many solutions for XML database have been proposed, including flat
files, relational database [FTS00, Mal99, SSK+01, STZ+99, TVB+02, ZND+01],
object relational database [MLO02, SYU99], and other storage management system,
such as Natix [FMO1], TIMBER [1J06, JLS+-04, PJO5, YJRO03], and Lore [MAG97].
We briefly discuss these solutions as follows.

1.2.1 Flat File Storage

The simplest type of storage is flat file storage, that is, the main entity is a
complete document; internal structure does not play a role. These models may
be implemented either on the top of real file systems, such as the file systems
available on UNIX, or inside databases where documents are stored as binary large
objects (BLOBs). The operation store can be supported very efficiently at low
cost, while other operations, such as search, which require access to the internal
structure of documents may become prohibitively expensive. Flat file storage is not
most appropriate when search is frequent, and the level of granularity required by
this storage is the entire document, not the element or character data within the
document.

1.2.2 Relational and Object Relational Storage

XML data can be stored in existing relational database. They can benefit from
already existing relation database features such as indexing, transaction, and query
optimizers. However, due to XML data that is a semistructured data, converting
this data model into relation data is necessary. There are mainly two converting
methods: generic [FK99] and schema-driven [STZ+99]. Generic method does not
make use of schemas but instead defines a generic target schema that captures any
XML document.

Schema-driven depends on a given XML schema and defines a set of rules
for mapping it to a relational schema. Since the inherent significant difference
between rational data model and nested structures of semistructured data, both
converting methods need a lot of expensive join operations for query processing.

4 1 Introduction

Mo and Ling [MLO02] proposed to use object relational database to store and
query XML data. Their method is based on ORA-SS (Object-Relationship-Attribute
model for Semistructured Data) data model [DWLLO1], which not only reflects
the nested structure of semistructured data but also distinguishes between object
classes and relationship types and between attributes of objects classes and attributes
of relationship types. Compared to the strategies that convert XML to relational
database, their methods reduce the redundancy in storage and the costly join
operations.

1.2.3 Native Storage of XML Data

Native XML engines are systems that are specially designed for managing XML
data [MLLAO3]. Compared to the relational database storage of XML data, native
XML database does not need the expensive operations to convert XML data to fit
in the relational table. The storage and query processing techniques adopted by
native XML database are usually more efficient than that based on flat file and
relational and object relational storage. In the following, we introduce three native
XML storage approaches.

The first approach is to model XML documents using the Document Object
Model (DOM) [Abi97]. Internally, each node in a DOM tree has four pointers and
two sibling pointers. The filiation pointers include the first child, the last child, the
parent, and the root pointers. The sibling pointers point to the previous and the next
sibling nodes. The nodes in a DOM tree are serialized into disk pages according
to depth-first order (filiation clustering) or breadth-first order (sibling clustering).
Lore [MAG97, MW99] and XBase [LWY +02] are two instances of such a storage
approach.

The second approach is TIMBER project [JAO2], at the University of Michigan,
aiming to develop a genuine native XML database engine, designed from scratch.
It uses TAX, a bulk algebra for manipulating sets of trees. For the implementation
of its Storage Manager module, it uses Shore, a back-end storage system capable
for disk storage management, indexing support, buffering, and concurrency control.
With TIMBER, it is possible to create indexes on the document’s attribute contents
or on the element contents. The indexes on attributes are allowed for both text and
numeric content. In addition, another kind of index support is the tag index, that,
given the name of an element, it returns all the elements of the same name.

Finally, Natix [FMO1] is proposed by Kanne and Moerkotte at the University of
Mannheim, Germany. It is an efficient and native repository designed from scratch
tailored to the requirement of storing and processing XML data. There are three
features in Natix system: (1) subtrees of the original XML document are stored
together in a single (physical) record; (2) the inner structure of subtrees is retained;
and (3) to satisfy special application requirements, the clustering requirements of
subtrees are specifiable through a split matrix. Unlike other XML DBMS which

1.4 XML Keyword Search 5

provide fully developed functionalities to manage data, Natix is only a repository.
It is built from scratch and has no query language, no much work done on indexing
and query processing, and no use of DTDs or XML schema.

1.3 XML Query Language and Processing

To retrieve such tree-structured data, a few XML query languages have been
proposed in the literature. Examples are Lorel [AQM+97], XML-QL [DFF98],
XML-GL [CCD+99], Quilt [CRF00], XPath [BBC04], and XQuery [BCFO03].
Of all the existing XML query languages, XQuery is being standardized as the
major XML query language. XQuery is derived from the Quilt query language,
which in turn borrowed features from several other languages such as XPath. The
main building block of XQuery consists of path expressions, which addresses
part of XML documents for retrieval, both by value search and structure search
in their elements. For example, the following path expression /bib/book[author=
‘Suciu’ J/title asks for the title of the book written by “Suciu.” In Fig. 1.1, this query
returns the title Advanced Database System.

1.4 XML Keyword Search

The extreme success of web search engines makes keyword Search the most
popular search model for ordinary users. As XML is becoming a standard in data
representation, it is desirable to support keyword search in XML database. It is a
user-friendly way to query XML databases since it allows users to pose queries
without the knowledge of complex query languages and the database schema.

Most previous efforts in this area focus on keyword proximity search in XML
based on either tree data model or graph (or digraph) data model. Tree data model
for XML is generally simple and efficient for keyword proximity search. However,
it cannot capture connections such as ID references in XML databases. In contrast,
techniques based on graph (or digraph) can capture those connections, but the
algorithms based on the graph model are very expensive in many cases. In this
book, we will show interconnected object trees model for keyword search to achieve
the efficiency of tree model and meanwhile to capture the connections such as ID
references in XML by fully exploiting the property and schema information of
XML databases. In particular, we will propose ICA (Interested Common Ancestor)
semantics to find all predefined interested objects that contain all query keywords.
We will also introduce novel IRA (Interested Related Ancestors) semantics to
capture the conceptual connections between interested objects and include more
objects that only contain some query keywords. Then a novel ranking metric,
RelevanceRank, is studied to dynamically assign higher ranks to objects that are

