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Preface

Since Pierre Curie discovered the piezoelectric effect in 1880, piezoelectric
materials have been widely used to make many electromechanical devices, such
as transducers for conversion of electrical and mechanical energies, sensors,
actuators, filters, resonators, ultrasonic generators, and piezoelectric biosensors.
The performance and reality of devices are established on the foundation of
electroelastic analyses due to the electromechanical coupling. The foundations of
the electroelastic analyses are the Newton’s law, Maxwell electrodynamics
equations, Lorentz’s law, and constitutive equations of materials. In electrically
nonlinear case, different authors give different governing equations in electroelastic
analyses. In this book, we give a simple theory to discuss simpler electrically
nonlinear problem in engineering.

Using the continuum thermodynamics, it is found that the first law of thermody-
namics contains a physical variational principle, which can be used as a fundamen-
tal natural principle to derive the governing equations in physics and continuum
mechanics. This theory will be used to derive the governing equations of the
discussed piezoelectric and pyroelectric body and its environment in Chap. 2.
The Maxwell stress can be obtained automatically by the migratory variation of
the electric potential.

In literatures many works on the static and dynamic generalized stress and
displacement analyses in piezoelectric and electrostrictive materials with and without
defects have been published. Some important results of piezoelectric materials will be
collected, modified, and discussed in a unified version in Chaps. 3 and 4. The results
of the electrostrictive, pyroelectric, and functional graded piezoelectric materials will
be given in Chap. 5.

The surface wave propagation in or not in a biasing state is discussed in Chap. 6.
The reflection and transmission of waves in piezoelectric and pyroelectric materials
are disposed by the inhomogeneous wave theory. We extend the first and second
thermodynamic laws to the case with varied temperature and propose an inertial
entropy theory due to the heat inertia. The temperature wave equation with a finite
propagation velocity can be derived easily from this theory. In the generalized
inertial entropy theory an inertial concentration theory is proposed, which can be
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extended to more extensive area.

In Chap. 7, the three-dimensional and some practical applied electroelastic
problems such as plates and shells in electroelastic theory are discussed.

The failure theories published in literatures are also collected in Chap. 8. In the
change of the microstructure and failure process, the energy possesses material
structure anisotropic behavior and a modal energy density factor theory is proposed,
which can also be used in other area, such as in phase transformation theory.

In order to read easily for readers the fundamental knowledge used in this book
is given in Chap. 1. Some basic problems are narrated in detail including the
formulation of a problem and the mathematical derivation. But for further
problems, the narration is simpler. Because the discussed problems in this book
are complicated and the check is difficult, some errors may occur. We wish readers
will give comments.

The author hopes that this book is useful for graduate students, scientists, and
engineers interesting in this area in the fields of continuum mechanics, material
science, solid-state physics, and device engineering.

The literatures are very enormous and cannot be all cited, but readers can get
more literatures from our cited papers.

This book extensively uses the materials of a Chinese book “Theory of Electro-
elasticity” published by Shanghai Jiaotong University Press. The author thanks the
support of the Shanghai Jiaotong University Press, Professor Z. Suo of Harvard
University, and Professor T-J. Wang of Xian Jiaotong University.

This edition published in Shanghai has minor changes, mainly for continuum
thermodynamics in chapter 1.

Shanghai Jiaotong University, Zhen-Bang Kuang
Shanghai, China
July, 2012
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Chapter 1
Preliminary Knowledge and Continuum
Thermodynamics

Abstract In this chapter, some basic knowledge of elastic theory, electrodynamics,
and thermodynamics which will be applied in this book are introduced. Some
extensions in continuum thermodynamics are proposed. It is shown that together
with the first law of thermodynamics, a physical variational principle (PVP) is also
held. The physical variational principle gives a true process for all virtual possible
process satisfying the geometrical constrained conditions. The physical variational
principle is considered to be one of the fundamental physical principles for quasi-
static system, which can be used to derive governing equations in continuum
mechanics and other fields. When the temperature varies with time, the inertial
entropy or inertial heat theory is proposed. This theory modifies the current
classical thermodynamic theory. From this theory, the temperature wave equation
with finite phase velocity is derived in a very simple fashion. It is shown that
the time arrived to equilibrium of the temperature is about 1 ns ~ 1 ps when an
internal heat source with a Heaviside step heat function is applied.

Keywords Basic knowledge < Physical variational principle « Inertial entropy

1.1 Background

Jacques and Pierre Curie brothers discovered the piezoelectric effect in 1880
(Sun and Zhang 1984; Ikeda 1990). They found out that a mechanical stress applied
on crystals such as tourmaline, quartz, and Rochelle salt could produce electrical
charges, and the voltage was proportional to the stress. Piezoelectric can also work
in reverse, generating a strain by the application of an electric field. Centrosym-
metric classes of crystals are always not piezoelectric, but a few kinds of crystals
are still not piezoelectric though lacking a center of symmetry. The pyroelectric
effect was found in eighteenth century (Lang 2005), earlier than piezoelectric
effect. Most ferroelectric crystals are strongly piezoelectric and pyroelectric. First
applications were piezoelectric ultrasonic submarine detector and quartz clocks

Z.-B. Kuang, Theory of Electroelasticity, DOI 10.1007/978-3-642-36291-0_1, 1
© Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg 2014
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during the First World War. After the Second World War, many new piezoelectric
and pyroelectric materials have been discovered in succession, such as BaTiOs,
Pb(Ti.Zr)Os-PZT, KDP, PMN, LiNbOs, and LiTaOs. In present time, it has been
successfully used in various areas, such as in aerospace, transportation, nuclear,
and medical.

It is different with the piezoelectric materials, all of the crystals, especially the
isotropic electrostrictive materials, have the electrostrictive effect.

The fundamental phenomenological theory of the piezoelectricity was
established by Kelvin (1856), Voigt (1910), etc. In the current time, due to the
intrinsic mechanical-electric coupling effects, piezoelectric materials have been
widely used in engineering structures to detect the responses of the structure by
measuring the electric charge (sensing) or to reduce excessive responses by apply-
ing additional electric forces or thermal forces (actuating). By integrating the
sensing and actuating, it is possible to create the so-called intelligent structures
and systems that can adapt to or correct for changing operating condition. Due to its
intrinsic electromechanical coupling behavior and its reliability in performance,
the electroelastic analysis is necessary and has been paid much attention. A lot of
literatures have appeared in journals and books. Here we cannot review all of these
literatures, but reader can find more literatures from our cited papers.

The foundations of the electroelastic analyses are the Newton’s law, Maxwell
electrodynamics equations, Lorentz’s law, and constitutive equations of materials.
In electrically nonlinear case, different authors give different governing equations
in electroelastic analyses. In this book, we give a simple theory to discuss simpler
electrically nonlinear problem in engineering.

Using the continuum thermodynamics, it is found that the first law of thermo-
dynamics contains the physical variational principle, which can be used as a funda-
mental natural principle to derive the governing equations in physics and continuum
mechanics. We also proposed the inertial entropy theory due to the heat inertia. The
temperature wave equation with a finite propagation velocity can be derived easily
from this theory. A failure theory based on the energy principle is proposed in this
book, which can also be used in other area, such as in phase transformation theory.
Many works on the static and dynamic generalized stress analyses in piezoelectric and
electrostrictive materials with defects, the surface wave propagation, and the failure
theory are also discussed in this book.

1.2 Foundations of Classical Electrodynamics

1.2.1 Constitutive (or State) Equations

There are many books that discussed the electrodynamics (Landau et al. 1984;
Stratton 1941; Cai and Zhu 1985; Moon 1984) and the electric engineering (Kruck
1954). Here, a short discussion is given only.
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The constitutive (or state) equations can be written in the following form:
D=DET), B=BH.T) J=JE.T) (1.1a)

where E,D.H,B, and T are the electric field intensity, electric displacement or
electric flux density, magnetic field intensity, magnetic induction or the magnetic
flux density, and the temperature, respectively; J is the total electric current density.
When E and H are small, the linear form is used for isothermal case:

D=€ E=cqE+P, B=p-H=yu,(H+M)

(1.1b)
J=Js+J.+Jv, Js=7 Eexx, Je=7v-E. Jy=7 (vXxXB)

where Js, J., and Jy are the given external exciting current density, the induction or
eddy current density, and motional electric current density, respectively; € is the
permittivity, g the permeability, y the electric conductivity of a material, respec-
tively, ¢p and y, are values of € and g in the vacuum or air. E.,, is an external field; v is
the velocity of a moving body. P and M are the polarization density and magnetiza-
tion density, respectively.

1.2.2 Conservation Law of Charge

The conservation law of charge is
V-J=—p, (1.2)

where p, is the free electric charge density. A superimposed dot indicates partial
differentiation with respect to time, i.e., () = 9()/0t, such as p. = dp, /0.

1.2.3 The Lorentz Force

For a continuous charge distribution in motion, the Lorentz force equation is
f=pE+vxB), or f=pE+J.xB, J.=pw (1.3a)

where f is the force density (force per unit volume) and J. is the current density.
Equation (1.3a) can be extended to the electromagnetic media and approximately
expressed as (Pao 1978; Kuang 2011a)

f=pE+JxB, p=p.+tpp. pp=-V-P

. 1.3b
Jt:.l‘f'.lp“‘.lmq JP :OP/()f:P Jm:VXM { )
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where p, is the total electric charge density constituted of free and polarized charges
and J, is the total electric current density constituted of conduction, polarized, and
magnetization current densities.

1.2.4 Maxwell Equations

The differential and integral Maxwell equations are as follows:

V-D=p,, fD-da:/pedV
a Vv
VxE:—aB, %E~ds:—§/8~da
Je ot /,

V-B=0. /B~da=0(/pmdv>
Ja Vv

V><H=J+B—D’ %H-dSZ/J-da—%—Q/D-da
or Je Ja ot J,

(1.4)

where V' is the volume occupied by the medium; a is the area vector and a is its
absolute value; s is a line element vector of a curve C; V is a differential operator
vector.

Taking the divergence of the second and the divergence of the fourth in Eq. (1.4)
and using the law of conservation of charge we find respectively,

V-0B/0t = 3(V-B)/ot =0

V.-J+V-0D/0t=VONV -D—p,)/ot=0 (1.5

If V-B=0and V-D — p, = 0 at the initial state, they will be held at any time,
which are just the third and the first equations in Eq. (1.4). Therefore, the indepen-
dent equations are the second and the fourth equations in Eq. (1.4) and the charge
conservation equation in Eq. (1.2), or other combination.

1.2.5 Electric Scalar Potential and Magnetic Vector Potential

The second and third equations are satisfied automatically if we introduce an
electric scalar potential ¢ and a magnetic vector potential A such that

E=-Vp—-0A/ot=-Vp—-A, B=VxA (1.6)

Using the constitutive equation (1.1b) with constante = ¢I, g = ul, y = yIand the

relation V x (V x A) = V(V - A) — V?A, the first and forth equations in Maxwell
equations are reduced to
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Ve +0(V-A)/0t=—p./c

(1.7)
VA — ucdA/0r —V(V - A + ucdp/0t) = —uJ

In order to define A uniquely, a supplement gauge condition must be given.
Introducing Lorenz gauge V-A + - cdp/0t = 0, Maxwell equations can be
written compactly in the form:

Vo —pcdo/or = —p./c

. MO (1.8)
VA — pcA)0r = —uJ

1.2.6 Quasi-Stationary Electromagnetic Field

If ®D/dt in Maxwell equations can be neglected, the field is called the quasi-
stationary magnetic (MQS) field, and in this case, all radiation effects can be
negligible. It is also called the eddy current field problem and is important in the
electric machine engineering. If 9B/0t in Maxwell equations can be neglected, the
field is called quasi-stationary electric (EQS) field which is less important in
engineering. For an eddy current field,

D)0t = —c(0°A/0r +Voyp/0r) =0, J=yE+Ji+J, (1.9)
so Eq. (1.7) becomes

Vi +0(V-A))ot=—p,/c

" (1.10)
V°A — uy(0A)0t + Vo) —V(V-A) = —u(Js + J,)

Introducing conductivity gauge V - A + uygp = 0, Eq. (1.10) is reduced to

V29 — uydp/ot = —p,/c

. (L.11)
VA — uyoA /ot = —u(Js + Jv)

Introducing Coulomb gauge V - A = 0, Eq. (1.10) is reduced to

Vo = —p./c

, (1.12)

VA — uyoA /0t — uyVo = —u(Js + J\)

In current sources and stator laminations, eddy currents are usually neglected. For a

constant magnetic field J = Js, J. = 0, J, = 0, Eq. (1.12) becomes V’A = —uJ..

The finite element analysis shows that the results of calculation sometimes are
not fully satisfactory when a supplement gauge condition is used.
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WhenL/ct < 1, thendD/dtand OB /Ot can all be neglected and we call this field
as quasi-static electromagnetic field, where ¢ = 1/\/[1? is the optic velocity in
media, L is the maximum size of the body, and 7 is the concerned time interval.
Neglecting OD /Ot and OB /Ot, the electric and magnetic fields are independent from
each other, so the electric field and magnetic field can be solved independently.
When material constants are all constant for static case, the Maxwell equations is
reduced to

V(€ E)=p, Vxu'-B)=1J (1.13)

For the static electric field, we can always introduce an electric potential or
potential ¢. For the case without electric current, i.e., J = 0, in material, the static
magnetic field can also be expressed by a scalar magnetic potential . In this case,
we have

E=-V¢, V(e E)=p., upy=7pe

(1.14)
H=-Vy, V-(u-H)=0 ;=0

The electromagnetic energy £ and its Legendre transformation, the electromagnetic
Gibbs free energy g, stored in the medium are

d%=E-dD+H-dB, dg=d¥%—d(E-D+H-B)=-D-dE —B-dH
(1.15)

1.2.7 Interface Connective (or Continuity), Boundary,
and Initial Conditions

The interface connective conditions of E, D, H, B of electromagnetic media 1 and
2 are

(Dv —Dy)-n=o0,. or D), —D,=o,

(1.16
(EZ*EI)‘H:(G.\‘F(’SP)/(()- Usp:_(Plfpl)'n .
(B —B)-n=0, or By, —B;,=0
(1.17)
(Hy—H,) - n=—(M,—M,) n/u,
nx (H,—H;)=J],, or (118
nx (B, —B)=uyJs+Jm), Jsm=nx (M,—M,) =
II,X(E‘_V—E|):—V(7T5/() (1.19)

In Eqgs. (1.16), (1.17), (1.18), and (1.19), n is the normal of the material 1, ogp is the
surface polarization charge density, J,, is the surface magnetization electric current
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density, and 7y = o.d is the electric couple density on the interface. There are only
two independent interface conditions in Eqgs. (1.16), (1.17), (1.18). and (1.19).
If material 2 does not exist, let D, = E; = B, = H, = (; the boundary conditions
can be obtained from Eqs. (1.16), (1.17), (1.18), and (1.19).

On the interface, the conservation condition of the electric current is

(J» —=J\) -n=—00,/0t = —6, (1.20)
The initial conditions are
E(x.0) = Ey(0), E(x,0) = Ey0), H(x.0)= H(0). _—
H(x,0) = Hy(0), xeV -

In Eq. (1.21), there are only still two independent conditions.

1.2.8 Electromagnetic Force

Multiplying the second equation in Eq. (1.4) by D and the fourth by B, then adding
the results we obtain

Dx(VxE)+D><(Z)—I’i+B><(V><H)+Q§><B+J><B:0 (1.22)
C

Using

Dx(VXE)=(VRE)-D—(D-VIE. V-(D%E)=(V-DE+ (D V)E
(VRE) D+ (VD) -E=V-[(E-D)J|, I=35e e

and the similar relations for B, H, Eq. (1.22) is reduced to

)
V~[(E-D+H-B)l—(D:?:E+B'>,H)}+;7r(D><B) ..

=—pE—-JxB+(VeD)-E+(V2B)-H

where the notation & is the tensor product, A & B = A;Bje; % e;, and e; is the unit
vector on coordinate axis x;. Using the conservation law of the electric charge.
Eq. (1.23) can be written in the form of the electromagnetic momentum equation:
M=V.-M—0gM/or. gM=DxB
M=D®E+BoH)— (1)2)(E-D+H -B)I
M=pE+JxB—(1/2)[(VaD)-E—- (VRE)-D]
~(1/2)(V©B)-H— (Vo H) B

(1.24)

where oM, fM, and g™ are called the Maxwell stress tensor, electromagnetic body
force, and electromagnetic momentum density, respectively.
IfD=c¢y-E+P. B=ypy,  (H~+ M) are used, Maxwell equations become
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OB
«V-E=p,—V-P, VxE:va—, V-B=0
OE oP " (1.25
/IJIVXB:J+(()E+5[‘+VXM

Analogous to the derivation of Eq. (1.24), we get

fM=v.o"—og" /o g" =cExB
6" = (co- EQE +u;'B®B) — (1/2)(c0E> + pg ' BH)I (1.26)
fM=pE+JxB—(V-P)+(0P/0t+V M) xB=pE+J xB

Using above method it is found that the Maxwell stress and electromagnetic
body forces are not unique (Pao 1978). The reason may be that boundary
conditions are not considered. The electromagnetic momentum equation can also
be discussed by the macroscopic Lorentz force method in Sect. 1.2.3. Let a
dielectric medium occupies a volume V enclosed by its surface a. Noting that on
the surface there are polarized electric surface density n - P and magnetic current
surface density — n x M, so the force acted on the body is

F' = / [(pe =V -P)E+ (J + 0P/t +V x M) x B]dV
;

+/[(n-P)E—(an)><B]da (1.27)

Ja

After some manipulations, we get

fM=v.e™—0g™/or, g™ =«ExB
M = (DRE+B®H)— (1/2)(c0E> + u5'B* — 2M x B)I (1.28)
f™M=pE+JxB—P - (VOE)+ (V®B)x M+ 0P/0t x B

Because the macroscopic Lorentz force is related to the polarization and mag-
netization of the material, so many different formulas can be got. Eq. (1.28) did not
strictly get from complete governing equations. Maugin (1988) considered that in
order to avoid arbitrary choice of the ponderomotive force and couple in the
electromagnetic contributions, he intend to arrive at expressions for these
contributions on the basis of a microscopic model, the electron theory of Lorentz
(Eringen and Maugin 1989). In electroelastic analyses only the static electromag-
netic force will be discussed by the physical variational principle, and it will be
discussed in the next chapter. In this book, the theory concerned with the photon
motion is not considered.
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1.3 Some Preliminary Knowledge in Electroelasticity

1.3.1 Universal Governing Equations

Universal governing equations must be obeyed by all moving or deforming
continuum (Pao 1978; Kuang 2002). In electroelasticity, the universal governing
equations are:

(1) Mass conservation equation

Ap)ot+V-(pv)=p+pV-v=0, p+po=0, p=0p/0t+up,

(1.29)
where p is the mass density, v is the velocity.
(2) Linear momentum equation
Voot (f"+f) =pin o+ (f7+17) =iy (1.30)
where f™ and f¢ are the mechanical and electromagnetic forces per volume.
(3) Angular momentum equation
w:0+C° =0, wkfja,j+Ci=0 (1.31)

where C° = P x E + u,M x H is the body couple density per volume. @ is the
permutation notation. The asymmetric part of the stress is induced by the
polarization and magnetization in electromagnetic material. From Eq. (1.31), it
is also found that the asymmetric part of the stress is the second-order effect
of the electromagnetic field. Let the symmetric part of the stress o be denoted
by ¢°, the asymmetric part by ¢, then we get

o = 0y + 0y o) = (0w +ou)/2

) (1.32)
oy = (o — ou)/2 = (ExP; — E/Py + poHiM; — poH M) /2

|

1.3.2 Three-Dimensional Governing Equations in Elasticity
with Small Deformation

In this chapter, only the case with symmetric stresses is discussed. Let u, 6, €, f be
the displacement, stress, strain, and body force per volume, we have (Ogden 1984;
Kuang 2002)

Geometric equation ¢&; = (i +u;;)/2, €=(Vou+u®V)/2 (1.33)
Momentum equation oj;; +fi = pii;, Vo +f =pu (1.34)

Constitutive equation oj; = Cyjyey, 6=C:e, €=5:06 (1.35)



