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Wavelet analysis of helicopter noise signal
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Abstract Helicopter noise features under typical flight condition were investigated based on
wavelet transform. The contribution of blade-vortex interaction (BVI) to helicopter noise and
low frequency oscillations beat was shown clearly from the detail of wavelet decomposition for
helicopter noise signal.

PACS numbers: 43.28, 43.60

1 Introduction

At the present time, for civil helicopters, stronger limitation is imposed by certification
rules to reduce acoustic nuisance. And for military helicopters, noise reduction has also been
concerned in limitation of detectability. Therefore helicopter noise generation and control has
become an increasingly important problem for the helicopter design. For turbine-driven heli-
copter widely used at present, the noise generation mechanism can be divided into aerodynamic
noise and machinery noise. The aerodynamic noise is due to the rotation of rotor blades and
jet. The machinery noise comes from speed reducer and power transmission of the engine. For
far-field noise, the aerodynamic noise is dominant contributor of helicopter noise and its spectra
are composed of discrete frequency components and broad band components. These discrete
noise and broad band noise are produced respectively by periodic aerodynamic forces (steady
or unsteady) and random aerodynamic pressure fluctuation acting on rotating rotor blades.
Measurement shows the discrete noise is main noise source. Therefore the research effort in the
present is concentrated on the discrete noise, in particular blade-vortex interaction (BVI) noise
and high-speed impulsive noise(!'2l. Due to pitch control, flapping, lagging and BVI, main rotor
operates in a serious unsteady aerodynamic environment so that its noise generation mechanism
is very complex. For tail rotor, its generation mechanism is even more complex because it is in
wake of the main rotor. To further understand the mechanism of helicopter noise, researchers
have devoted much attention to newly developed signal distinguishing technique. In this paper,
the wavelet analysis technique is applied to extract the main components of helicopter noise.
The results prove this technique is helpful on the understanding the mechanism of helicopter
noise.
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2 Helicopter noise signal analysis based on wavelet transform

2.1 A brief introduction to wavelet transform

Wavelet analysis is a new time-frequency analysis method. Wavelet transform is defined

o Wit = 7= [ s () dn

In the equation the frequency parameter f is replaced by scale parameter s. Therefore the

wavelet transform is referred to a time-scale plane rather than a time-frequency plane. On
the scale axis the small-scale corresponds to the high frequency region and the large-scale
corresponds to the low frequency region. A characteristic of the wavelet transform lies in the
introduction of an adaptive band pass window (¢((7 —t)/s)). The high frequency region of the
signal (i.e. small- scale value of s) corresponds to short time window and the low frequency
region of the signal(i.e. large-scale value of s) corresponds to long time window. This is the
reason why using wavelet transform not only the components of short time-high frequency in
the signal are analyzed efficiently but also the low frequency-slow varying components in the
signal are estimated accurately. In addition, based on wavelet analysis the signal is not only
decomposed into a series of details of wavelet decomposition, but also several details which are
arbitrarily extracted from the series details can be reconstructed into a new signal. It is very
useful for the noise mechanism study. It is the reason the wavelet analysis was used in this
paper. For discrete wavelet transform, the signal is decomposed into a detail component (W f)
and an approach component (Sf) of wavelet decomposition on every step. For example, when
sampling frequency is 1380 Hz the octave coverage region of details and approach of wavelet
decomposition in frequency domain are represented in Fig. 1.

0 690 1380
o W | 71z
S Wi
Sh | W
T

Fig. 1 Process of decomposing signal into a series of details and an approach components step by step

2.2 Flight measurement of helicopter noise

Flight noise of Ecureuil AS350B2 Helicopter was measured in this paper. The noise data
and helicopter position corresponding to various typical flight conditions were stored into data-
bank. The arrangement of noise measurement is represented in Fig. 2. Flight conditions of
the helicopter are comprised of 9° - climb, maximum continuous power climb, level flight, 4°,
6°, 8° and 10° - descent. Flight velocities are comprised of 70 km/h, 102 km/h, 140 km/h
and 220 km/h. Actual flight state of helicopter was obtained by flight track homing system.
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For the far field measurement, in order to avoid the sound interference from ground reflection
in the low-mid frequency range the ground microphone is placed upside down and point to
an aluminum plate that is 400mm in diameter. The aluminum plates are flushed mounted on
the ground surface and keep 7Tmm distance from the microphones. Three cameras with a scale
mark are placed under the flight track (see Fig. 2). When helicopter flies over these cameras,
its picture will be taken, and the camera pulse signals are simultaneously sent to FM tape
recorder (used for recording noise signals). By using this special technique the helicopter flight
position above these cameras (flight altitude and yawing distance) are provided. But flight
track (including flight velocities) is recorded with a vision tracker. Atmosphere parameters (in-
cluding wind velocity and direction, temperature, moisture, atmosphere pressure) are provided
by atmosphere station of airport. The equipment on the helicopter are mainly used to record
flight parameters, rotational impulsive signals of main and tail rotor as well as helicopter noise
signals from two nose cone microphones, which are mounted at left sled and right horizontal
tail wing.

MIC 1 ®(230m)

MIC 2 ®(150m)
MIC 3 ®(100m)

MIC 4 @(50m)
; L Camera
Flight dircction

—(C} {O} (0)]
\MICS Om)

MIC 6 ®(80m)

MIC 7 ©(150m)

Fig. 2 The arrangement of noise measurement points

2.3 Extracting and analysis of helicopter noise feature

It is found on the basis of the helicopter noise measurement that a strong periodic spikes
appear in the sound pressure time histories of the helicopter ground noise when helicopter
descends at 6° — 10° with a mid-low speed (see Fig. 4 ). The appearance of the spikes is caused
by very strong local unsteady aerodynamic force on the main rotor, which is due to blade and
vortex interaction (BVI). In the following part of this paper, the BVI impulsive noise will be
analyzed by using wavelet analysis technique.

It is known from wavelet analysis theory that the helicopter noise signal can be decomposed
into wavelet details corresponding to different frequency band so that those undistinguished
features become distinct in subspace of different frequency band (i.e. form wavelet detail),
whereas wavelets corresponding to a specific time in the details can be selected to reconstruct
a interesting sound signal (i.e. the feature of the helicopter noise is extracted based on inverse
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wavelet transform). Here, as an example, the ground noise signals respect to three positions
of the helicopter at the 8° -descent (flight velocity, 102 km/h) were analyzed and discussed.
The three positions are shown in Fig. 3. Fig. 4 represents the sound pressure time histories of
original signal and reconstructed signal, here, for the reconstructed signal the BVI spikes were
excluded. It is found from the sound pressure time histories of original signal that the period
of the spikes in sound pressure time histories is identified with the rotational cycle of the main
rotor. It demonstrates that BVI impulsive noise happens on above flight condition. It should
point out that the impulsive noise also appears in high-speed flight, but on above flight condition
the advancing blade tip speed (Mach number, about 0.76) is not high enough to produce high-
speed impulsive noise. In order to quantify the influence of BVI the wavelet analysis technique
was used in this paper. The details of wavelet decomposition at main measurement point are

Position 1
%_er Position 2
ﬁ% Position 3

120 m

|
| |
| |
I l
l I
|

|
I
|
MIC 5 (main) l
|

| .l/
-113m 0 113 m

Fig. 3 Three positions of the helicopter corresponding to main measurement point
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Fig. 4 Time histories of the sound pressure original signal and reconstructed signal
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shown in Fig. 5. The A-weighted spectra, both for original signal and reconstructed signal
(excluded BVI spikes) at main measurement point are shown Fig. 6. A-weighted sound pressure

levels of total noise and its BVI component are shown in Table 1.

Original signal
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Fig. 5 Details of wavelet decomposition
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Fig. 6 A-weighted spectra of original signal and reconstructed signal
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Table. 1 A-weighted sound pressure levels of total noise and its BVI component (dBA)

Measurement Position 1 Position 2 Position 3
points Total BVI Total BVI Total BVI
Point 2 76.6 75.3 76.4 73.1 75.6 73.0
Point 5 84.1 83.4 83.2 80.4 76.3 73.9
Point 7 73.2 70.0 73.5 69.6 69.2 65.2

Discussion on the results of wavelet analysis at 8° (102 km/h)-descent condition:

(1) Table 1 shows variation of BVI noise component with the helicopter position, which
indicates strong directivity of BVI impulsive noise. It is found that the BVI noise component
is not easy to distinguish in the sound pressure time history when it is weaker comparing to
the remainder (without BVI noise component). Therefore application of the wavelet analysis
technique to extract the BVI impulsive signal is helpful to obtaining a better results. The BVI
spike and the instant of its occurrence can be clearly seen in detail components Wfl and Wf2
of Fig. 5. Obviously for extracted feature of helicopter noise signal the wavelet analysis has
a function of the “numerical microscope”, while the pure time-domain or frequency-domain
analysis do not possess this function.

(2) For the analysis of BVI features, first, wavelets corresponding to spikes were extracted
from wavelet details Wfl, Wf2 in Fig. 5 and added together to reconstruct a new signal (i.e. BVI
impulsive noise). For BVI impulsive noise, its amplitude, width, period and occurrence instant
in a rotary period of the rotor describe its features. The directivity of BVI impulsive noise may
be obtained from flight track data corresponding to measurement point and the SPL of the
reconstructed signal of BVI. Fig. 4 shows that BVI impulses (positive impulse) corresponding
to the helicopter position 1, which are mainly caused due to the advancing blade, are stronger
than those corresponding to the helicopter position 2. Fig. 4 also shows that BVI impulses
corresponding to the helicopter position 3 are negative impulses, which are mainly caused due
to the retreating blade. Furthermore, Table 1 shows that the BVI impulsive noise level at
measurement point.7 is lower than that at measurement point 2, which indicates that the noise
level in the advancing blade side is still higher than that in the retreating blade side even when
the BVI impulsive noise is mainly produced by retreating blade.

(3) The difference between the reconstructed signal (right side in Fig. 6) and the original
noise signal (left side in Fig. 6) shows that appearance of BVI enhances the high order harmonic
components of main rotor blade passing frequency (about 20 Hz) and do not affect the harmonic
components of tail rotor blade passing frequency (about 70 Hz), which indicates the BVI noise
comes from the main rotor. In addition, the high order harmonic components enhanced by
BVI are in the sensitive frequency range of human ear. For example, when the helicopter is
in position 1 (see Table 1), the BVI noise level measured by the main measurement point is
83.4 dBA, while the total noise level of the helicopter is only 84.1 dBA. This means that BVI
noise is effective noise source although it is a very narrow impulsive noise.

(4)A low frequency oscillation beat of the helicopter noise is shown from wavelet detail
components Wf4 — Wf6 in Fig. 5. And its character varies with positions 1, 2 and 3. This can
not be observed by only pure time-domain or frequency-domain analysis method.
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3 Conclusions

The following conclusions are drawn from the wavelet analysis for the helicopter noise
signal:

(1) Helicopter noise is different from propeller aircraft noise. Its frequency-domain spectra
are more complex. In noise spectra, the amplitudes of higher harmonic components of helicopter
blade passing frequency are decayed much slower with increasing of its order than that of
propeller. It is the reason why helicopter noise, especially BVI noise produced by a helicopter
descending with a middle or low speed, makes people nuisance.

(2) It is helpful to using wavelet technique to extract some helicopter noise features for
analyzing helicopter noise mechanism.

(3) The results are encouraging though the analysis for helicopter noise signals based on
wavelet transform in this paper is only a try.
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