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ABSTRACT. A novel procedure having strategic flexibility is designed to handle
multiple criteria sorting problems such that a decision maker (DM) can adjust
the group count and fine-tune group numbers to improve sorting efficiency.
Its unique features include interactive control, so that the DM can adjust the
number of groups and other sorting characteristics; the capacity to aggregate
cardinal and ordinal criteria using concepts from data envelopment analysis;
and the integration of approximate information about criterion weights, which
may help to ensure that the sorting results more closely reflect the DM’s in-
trinsic preferences. A case study in inventory classification is carried out to
demonstrate the efficacy of the proposed method.

1. Introduction. The main task of multiple criteria decision analysis (MCDA) is
to assist a decision maker (DM) to choose, rank or sort a finite set of alternatives
according to two or more criteria [19]. Over the past forty years, many methods
have been proposed to solve choice and ranking problems, such as Multiattribute
Ctility Theory (MAUT) [12], Analytic Hierarchy Process (AHP) [20] and Outrank-
ing techniques [18]. But sorting problems have not been systematically explored
until recently.

With the evolution of MCDA and the appearance of powerful new classification
tools, MCDA sorting has recently become an important research focus. In 2002,
Doumpos and Zopounidis published the first book on sorting in MCDA [9], while
Zopounidis and Doumpos [29] gave a comprehensive literature review. Chen et
al 4] recently proposed a case-based distance sorting method with an application of
water-use analysis for Canadian municipalities, and later Chen et al. [5] studied the
extension of traditional sorting to multiple criteria nominal classification problems.

Generally speaking, there are two approaches to sorting: direct judgement and
case-based reasoning. Direct judgement methods, such as ELECTRE TRI [28],
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possess a general preference model, and require the DM to provide enough explicit
information to evaluate all of its parameters. Case-based reasoning methods require
the DM to furnish decisions on selected cases; these decisions are used to calibrate
parameters that mimic the DM’s preferences as consistently as possible. Case-based
approaches include the dominated-based rough sets method [24], UTADIS (UTilités
Additives DIScriminantes), MHDIS (Multi-group Hierarchical DIScrimination) [9]
and a case-based distance sorting method [4].

Most MCDA sorting methods classify alternatives into a pre-defined number of
groups which is usually subjectively set by a DM. In practice, however, a DM may
wish to avoid fixing the group count in advance, preferring instead a flexible sorting
method that, based upon the sorting results, permits adjustment of the group count
to organize the alternatives as efficiently as possible. For example, ABC analysis
is a frequently used approach to classifying stock-keeping units (SKUs) in which
the most important SKUs are placed in group .A, the least important SKUs fall
into group C; other SKUs belong to the middle group B. However, this is not the
only way to classify SKUs. Due to uncertainty considerations, the DM may wish to
compare the results of 2-group, 3-group and 4-group sorting of SKUs before making
a final decision. Hence, a sorting procedure with strategic flexibility needs to be
used to fulfill this purpose. Many sorting methods would not be suitable for flexible
sorting: case-based approaches to sorting, such as the dominated-based rough set
method, may not be easily adapted for flexible sorting because of a lack of training
case sets; other direct sorting methods, such as ELECTRE TRI, do not have a solid
procedure to determine group thresholds to handle different sorting arrangements.

The motivation of this paper is to provide a theoretically sound approach to mul-
tiple criteria flexible sorting which allows the DM to explore and compare different
kinds of sorting results. The method utilizes the concepts from Data Envelopment
Analysis (DEA) [3] considering preference uncertainty. DEA, as first put forward
in [3], is a technique used to measure the relative efficiency of a number of similar
units performing essentially the same task. Within the past few decades, various
types of research have been conducted to apply the concept of DEA in MCDA such
as in [7], [8] and [25]. A methodological connection between MCDA and DEA is
that if all criteria in an MCDA problem can be classified as either positive criteria
(benefits or output) or negative criteria (costs or inputs), then DEA is relevant to
MCDA using additive linear value functions [25].

Specifically, in this paper preferences in MCDA have been interpreted as values
(preferences over consequences, i.e. physical measurements) and weights (prefer-
ences over criteria, the relative importance of criteria). Next, alternative values on
ordinal criteria and criterion weights, which we believe the DM may feel more diffi-
cult to measure precisely, are expressed in a few interval data-based constraints to
reduce the work load of precise value specifications for the DM. Then, a DEA-like
model is applied to measure the relative efficiency of an alternative and, accordingly,
assigns it to an appropriate group.

The unique features of the proposed method are that (1) the DM controls the
group count, and can adjust it interactively; (2) both cardinal and ordinal criteria
can be included; (3) preference uncertainty in MCDA has been addressed by con-
sidering any available information on values of ordinal criteria and criterion weights
as interval data-constraints, so that the generated sorting results more closely re-
flect the DM’s intrinsic preferences; (4) a DEA-like model is proposed to aggregate
preference, and hence, applied to measure the efficiency of different alternatives.
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A case study in inventory classification is carried out to demonstrate the practical
usefulness of the method.

2. Sorting in multiple criteria decision analysis.
2.1. Multiple Criteria Decision Analysis (MCDA).

2.1.1. The Structure of MCDA. Any multiple criteria analysis must begin with
the processes of defining objectives, arranging them into criteria, identifying all
available alternatives, and then determining the consequence of each alternative
on each criterion. A consequence is a direct measurement of the success of an
alternative according to a criterion, such as cost in dollars.

Figure 1 shows the basic structure of an MCDA problem, with the following

definitions and notation:

o A={A' A% ... A% ... A"} is the set of alternatives.

e I = I°UT° is the set of criteria, where I¢ = {If,I5,...,I;} is the set of
cardinal criteria and I° = {I{,I3,...,I2} is the set of ordinal criteria. Of
course, I°NI° = 0.

e ¢} € Ris the consequence (measure) of alternative A* on cardinal criterion .
(At this stage, there is no assumption about which values of a consequence
are preferable.)

e di €{1,2,...,1} is the consequence of alternative A* on ordinal criterion I¢.
Formally, L = {L, Lo, ..., L;} is the linguistic grade set, where L; represents
the best grade, Lo the next best, and so on down to the worst grade, L;, and

i = r means that A* has been assessed at grade L, on criterion If, i.e. as
r*® grade. For example, d3 = 2 means that alternative A® is considered to be
2°d grade on ordinal criterion I. (For simplicity, we assume that all ordinal
criteria have the same linguistic grade set.)

i Alternatives A
Criteria I i A2 Al An
S & :

8 1
e [ ]
= : \ 4
o C

91. Ij ————— Jre — ’ C;
HE~ !
g L4 '
2 L Y
3 [ F—4--F—la
g :

= [ I

FIGURE 1. The structure of MCDA

Note that it is assumed that there is no uncertainty in the consequences. For
cardinal criteria, the DM can measure the consequences of alternatives directly
while for ordinal criteria, the values of di. may summarize several estimates of the
consequences, perhaps from different individuals.
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Roy [19] proposed several MCDA problématiques, or problem approaches, with
respect to alternative set A:
(a): The Choice problématique: Choose the best alternative from A.
(B): The Sorting problématique: Sort the alternatives of A into a predefined
number of (relatively) homogeneous groups, arranged in preference order.
(7): The Ranking problématique: Rank the alternatives of A from best to
worst.

2.1.2. Preference Ezpression in MCDA. Obviously, the DM’s preferences must be
crucial to the solution of any MCDA problem. But different ways of expressing
preferences can lead to different results. We distinguish two kinds of preferences,
values, which are preferences on consequences, and weights, which are preferences
on criteria.

The value of an alternative on a criterion is a function of the consequence of
the alternative on that criterion; this function must reflect the DM’s needs, under-
standing, and objectives. For cardinal criterion I, the value of alternative A® is

u;(A*) = u} € R; for ordinal criterion I, it is vk(A*) = v € R. Thus,
u;(A4) = f; (¢;(A)) or vk(A) = gk (di(A)) (1)

where f;(-) and gx(-) are mappings from consequences to values for the j** cardinal
and the k*® ordinal criterion, respectively. Better performance of A* on these criteria
is indicated by increases in u} and vj. For ease of comparison and aggregation, u}
and v} are usually adjusted so that the same minimum and maximum apply to all
criteria.

The DM'’s evaluations of alternative A € A on all cardinal criteria are collected
in the cardinal value vector, u(A) = (u1(A),u2(A),...,up(A)). Analogously, the
ordinal value vector associated with A is v(A) = (v1(4), v2(4),...,v4(4)).

Weights are positive real numbers that indicate the relative importance of crite-
ria. The weight of cardinal criterion I is w§ € RT; the weight of ordinal criterion
I} is wf € R*. The cardinal weight vector is w® = (w§,ws, ..., w$, ..., wp), and the
ordinal weight vector is w° = (wf, w3, ..., w3, ..., wy).

After an MCDA problem has been structured (as in Figure 1), and after the
DM'’s preferences have been acquired, an MCDA problématique can be solved using
a global model to aggregate preferences. This model can be represented using an
overall evaluation function, V(-), which we write as

V(4) = F; (u(4),w) + Fo (v(4),w°),

where V(A) € R is the overall evaluation of alternative A, F,(-) represents the input
of the cardinal value vector u(A) and weight vector w® to the overall evaluation,
and F,(-) represents the input of the ordinal value vector v(A) and the ordinal
weight vector w° to the overall evaluation. A simple example is the linear additive
value function, which has the form '

p q
V(A) =) wfui+> wp-f (2)
j=1 k=1

2.1.3. Preference Uncertainty. In some situations, DMs may not easily express their
preferences precisely. For example, DMs may not feel comfortable to specify the
values of alternatives or criterion weights using real numbers. Instead, they pre-
fer interval data for preference expressions. Much research has been carried out
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for preference uncertainty in MCDA. For instance, Rios Insua [17] introduced a
general framework for sensitivity analysis that expanded results of the traditional
Bayesian approach to decision making. Stochastic multicriteria acceptability anal-
ysis (SMAA) comprises a family of techniques to handle MCDA problems including
incomplete, imprecise, and uncertain information [13]. Vetschera [26] presented a
recursive algorithm for volume-based sensitivity analysis of linear decision models
and the efficiency of his approach is analyzed both analytically and via computa-
tional experiments.

In this paper, preference uncertainty is taken into account by maximizing the
possibility of obtaining the best possible evaluation score for alternatives. Such
a procedure can provide a fair overall assessment. More specifically, two kinds of
preference expressions, the values of alternatives for ordinal criteria and criterion
weights, which are usually hard to be measured precisely, are allowed to be set as in-
terval data-based upon DMs’ estimates. Then, an optimization model is constructed
for each alternative to find the best possible outcome within the predefined interval
constraints. Although a similar idea is put forward by Cook and Kress (7, 8], our
paper focuses upon the extension of this idea to handle flexible sorting problems.

2.2. Multiple criteria sorting.

Definition 2.1. An m-sorting of the alternative set A is a partition of A into
m > 1 non-empty subsets, denoted as S = (S;,S,,...,S,,), satisfying the following
conditions:

eVg,h=1,2,...,m,and g #h, S, NS, =2

e U;n=1 Sy =

Note that m is the count of S, and S, is the g*" element of the sorting S, or the
gt" group of S.

In a sorting, order matters; S is often written S; > Sy > ... = S,,, where >
is pronounced “is preferred to.” The idea is that earlier groups contain “better”
alternatives, and alternatives in the same group are “about equally good.” Figure
2 suggests this interpretation of A, S, and S,.

778 N

Z s A
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/ \
S,

T More preferred
Alternatlves Sorting |
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/
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/
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~ 7

——

FIGURE 2. Relationship of A and S

In most sorting procedures, the count m is predetermined. Once the preferences
are given, the value of m determines the sizes of the elements of the sorting. In the
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flexible procedure described next, the DM has the freedom to adjust the element
sizes directly, indirectly affecting the count, m. Such flexible adjustments should
enable the DM to organize the alternatives more efficiently.

3. Flexible multiple criteria sorting.

3.1. Value acquisition.

3.1.1. Values Acquisition for Cardinal Criteria. Many methods are available to ob-
tain the DM’s values, such as Multiattribute Utility Theory (MAUT) {12] and the
Analytic Hierarchy Process (AHP) [20]. The following two transformations are
commonly used and are simple:

e If a larger value of c;- represents better performance,

i _ ,min
CJ- €

ety (3)
J c;nax . c;n
e If a smaller value of cj represents better performance,
. chax _ gt
u; = . (4)
C;}lax e c;mn

where c;“i“ and c*® are the minimum and maximum consequences on I7. Note
that 0 < uj- < 1. In practice, the DM may revise the transformations (3) and (4)
to express his or her preference more accurately, provided the bounds 0 < u} <1
are maintained.

3.1.2. Values Acquisition for Ordinal Criteria. Define an indifference threshold, o >
0, with the interpretation that on any ordinal criterion, I?, differences in vy less
than o can be ignored. (For simplicity, we assume that indifference thresholds of
all ordinal criteria are the same.) Because of limitations in cognitive ability, non-
negligible indifference thresholds are common in practice. For example, in grading a
course, an instructor may ignore any differences between scores falling in the interval
from 76.5% to 79.5%, assigning them all a grade of B+. Similarly, in thinking of
the price of a car, people typically ignore differences of less than $100, or perhaps
$10 or $1.

Adapting ideas from DEA [3], our method assesses an alternative A € A on the
ordinal criteria in I° by finding the maximum possible values of v(A) consistent with
the grades of A on I7,13,...,17. Therefore, to evaluate A* we find the maximum
value of v}, that is consistent with the following conditions [8]:

e For alternatives A™ and A!, and for k = 1,2, ...,q,

if dit > df,, vi — vi* > (& — di)o; (5)
e For any alternative, A*, and for k = 1,2, ...,q,
a<wvi <1 (6)

Here, (5) provides lower bounds for value differences between alternatives at differ-
ent grades, and (6) normalizes the alternative values on each ordinal criterion. For
example, if d} = 2 and dZ = 5, then the constraints read v} — v} > (5 — 2)a = 3,
a < v <1and a < v < 1. Note that the DM could provide information to rep-
resent more precisely his or her preferences over linguistic grades; for example, he



A CRITERIA SEQUENTIAL SORTING PROCEDURE 413

could specify that the difference in value between L; and L exceeds that between
L, and L3. For some useful suggestions, see [8].

3.2. Sorting model construction. To aggregate the values of A? over different
criteria, a linear additive function, (2), is selected, and re-written as follows:

P g
V(AY) = wa-u;+2wz-v,‘c. (7
i=1 k=1

To apply (7), we need only find the weights w5 for j =1,2,...,p and wy for k =
1,2,...,q. First, select an indifference threshold for weights, 3 > 0. Again following
the principle that an evaluation should be the maximum possible, consistent with
all “natural” constraints, we assume the weights are chosen to maximize V' (4*),
subject to the following conditions:

o To make comparisons easy, V(A*) must lie between 0 and 1, i.e.

0 V{AY L 1 for =19, ....8 (8)

e Because differences in wj and wj less than [ are not meaningful, we require
that

wj>pBforj=1,...,pandwg > ffork=1,...,q. 9)

e Any preference information that the DM can provide about weights, however
imprecise, must be satisfied, so that the sorting more closely reflects the DM’s
intrinsic preferences. The imprecise preference expressions listed by [21] can
be adapted for this purpose, as suggested next.

— Strict ranking If the DM can state that the j*" criterion is more impor-
tant than the k*®, where j # k and both I§ and Iy are cardinal criteria
or both IJ‘? and I are ordinal criteria, then

w; — wi > B and wi —wg > f, (10)

as appropriate. Also, for all j = 1,...,p and k = 1,...,q, the DM
may agree that cardinal criterion I is not equal in importance to ordinal
criterion Iy, so that

[w§ — wi| > B. (11)

— Fixed bounds The DM may wish to provide lower and upper bounds
on the importance of criteria. If L; and U; are lower and upper bounds
for the weight w} of cardinal criterion I7, and Ly and Uy are the lower
and upper bounds for the weight wy of ordinal criterion Iy, then,

B<L; <w;<Ujand < Ly <wg < Uk. (12)

The parameters a and § both represent indifference thresholds, for which «
applies to the values of ordinal criteria and 8 to the weights of all criteria. Since
values and weights are normalized between 0 and 1, it is useful to adjust these
thresholds simultaneously, which we facilitate by setting

a=Jg.

We call J € R the adjustment ratio for thresholds, and suggest that the DM fix
J such that all thresholds can be set by adjusting 8. Usually, larger cardinality
of criteria sets and the larger linguistic grade set (associated with ordinal criteria),

require smaller values of these thresholds to distinguish among alternatives. Hence,

a reasonable starting value for J is I—J#, where | = |L| and p + ¢ = |I|]. Note that
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when there are no ordinal criteria, [ and a are set as 0, and the proposed method
is carried out simply by adjusting 3. )

The aggregate score for a particular alternative, A? , is the solution of the optimal
program
P(AY, A, B):

Maximize V*(AY) = [Zf___l w§ - u;' + 37 wp- v;c']

Subject to:

0< 3%, wi wh+ 3 {_wp-vp <1 fori=12,..,n;

vt — v} > (di — df)a whenever dj, > df, where k = 1,2,...,q and 4,£ €
{1,2,... ;0,8 L

a<vi<l fork=12,..,¢qadi=12,..,n;

w§,wp > B, for j=1,2,...,p,and k= 1,2,...,q;

Constraints (10)-(12) as applicable;

a=Jg.

The inputs to P(AY, A, ) are u} and dj, (for i = 1,2,...,n, j = 1,2,...,p, and
k=1,2,...,q), and 8. (The parameter J can also be adjusted if the DM so desires.)
The output of P(A”, A, 3), V*(AY), is the highest aggregate score that A% can
achieve, consistent with all the specified conditions.

Fori=1,2,...,n, the aggregate score of alternative A* must be calculated using
P(A' A, B). If V*(A*) = 1, then A® can achieve the best possible performance, and
we call it efficient. Of course, whether an alternative is efficient can change if g
changes. We denote the set of efficient alternatives at threshold 3 as Eff (A, ) =
{A* € A : V*(A?) = 1}; the alternatives of A — Eff (A, 3) are then inefficient at
threshold £.

3.3. Setting the threshold. Just as in [8], the following theorem holds:

Theorem 3.1. For anyi = 1,2,...,n, the aggregate score, V*(A?), is non-increasing
in (3.

Proof. The score V*(A?) is the solution of P(A% A, ). As 3 increases, the con-
straints of P(A?%, A, 3) cause the feasible region to shrink. O

A reasonable upper bound of § would therefore be the largest value consistent with
efficiency, i.e. the largest value such that there is at least one efficient alternative.
The following program finds this value:
P(A)
p* = max f
Subject to:
Eff (A,B) #0 |
All constraints of P(A*, A, (), fori=1,...,n.
It is immediate from Theorem 3.1 that, if A* is efficient when 3 = 3*, then A* is
efficient whenever 8 < 8*. Also, Eff (A, 3) # @ whenever 3 < 3*.
A reasonable lower bound for 3, say ., would have the property that

0<B<p.= Ef (A B)=Eff (A,B) (13)

In particular, reducing # below (3, would not increase the number of efficient al-
ternatives. Note that f, is analogous to € in DEA [3]. The maximum value of
B. satisfying (13) depends on the specific problem, of course. The starting point
suggested by the DEA software, Frontier Analyst [1], namely 8, = 1 x 1079, is
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usually small enough to satisfy (13). Note that when the set of criteria or alterna-
tives is small, there may has no efficient alternative no matter how small g, it is.
Under such extreme decision situation, the MCDA problem may not be so difficult
to handle considering the relatively small number of criteria or alternatives. The
DM can manually set the thresholds to sort alternatives into different groups based
upon the values generated from the model.

In summary, Theorem 3.1 demonstrates that greater values of 3 increase the
discrimination of the aggregate scores of the alternatives in A, in that fewer alter-
natives are efficient. The program P(A) provides a good upper bound for §; at or
below 3*, there is always at least one efficient alternative. The lower bound for £,
ideally satisfying (13), generates the largest number of efficient alternatives. As
is decreased from 3* to (3,, more and more alternatives become efficient; once an
alternative becomes efficient, it remains so as [ decreases.

3.4. Sorting strategies. We now suggest sorting methods that can be applied
to the alternatives of A to produce an m-sorting (S;,S;,...,S;,). Each method
assigns alternatives to groups in sequence, beginning with the best group, S;, con-
tinuing with S3, and so on down to the bottom group, S,,. In each method, an
initial value for 3 is determined, and then Eff (A, 3) is assigned to S;. Then, per-
haps after the value of G is reset, Eff (A — Sq, ) is assigned to S,. In each step,
the efficient unassigned alternatives (with respect to the current value of ) are
assigned to the next sorting element.

If the value of m is predetermined, then the procedure described above should
be used to determine sorting elements S;,S,,...,S,,_1, and then all unassigned
elements should be assigned to S,,. In fact, the process can be stopped at any stage
(thereby determining m) by assigning all unassigned alternatives to the next group
and declaring it to be the bottom group. Note, however, that the process must stop
when all unassigned alternatives are efficient, in which case they must constitute
the bottom group, which determines m. For this reason, it may not be possible
to achieve a particular value of m. This problem may be remedied by selection
of smaller values of 3 in the initial steps, which will reduce the size of the earlier
sorting elements and thereby increase the count, as follows from Theorem 3.1. As
illustrated below, however, this problem is not common.

In the initial step, the value of 8 must be selected in the interval [B,,3*]. The
next lemma shows that selecting a value of 8 from this same interval in subsequent
steps is always feasible, in the sense that there is at least one efficient alternative,
so that the next group is non-empty. '

Lemma 3.2. Let A’ C A, where A’ # 0, and let 8* and B* be the values of
programs P(A) and P(A’), respectively. Then 3* < 3*.

Proof. Analogous to the proof of Theorem 3.1. O

It is clear that the indifference threshold, £, is a crucial input to each step:
changing the value of 8 may drastically change the number of efficient alternatives.
The sorting methods we suggest differ in indifference thresholds, which constitute
a convenient source of sorting flexibility. We denote by £; the value of 3 used to
determine the first group, S1, B2 the value of 8 used to determine the second group,
S;. ec.

e Lower bound sorting strategy (M1)

Let 3, = B2 = ... = PB.. As noted above, the lower bound indifference
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threshold, ., generates the largest possible efficient set of alternatives, so
sorting method M1 tends to produce larger sorting elements, and (if the
sorting is allowed to continue until all unassigned alternatives are efficient)
minimizes m, the count of the sorting. Usually, the approximation given in
(13) is sufficient for g,.
e Maximum threshold sorting strategy (M2)
Set B; = [*, where B* is determined by P(A), and let S; = Eff (A, ).
For g = 2,3,..., let B4 be the value of the program P(A — Ui;i Sk), and
let S, = Eff (A — UJZ} Sh,B,). This procedure terminates when Eff (A -
91 Sy, 8y) = A — JIZ] Sh, in which case m = g and S, = A — ez Sh.
It follows from Lemma 3.2 that 8y < B2 < ... £ Bm. It also follows from
the discussion above that sorting method M2 produces the smallest possible
sorting elements, and therefore maximizes the count, m. Of course, the DM
can reduce m by choosing to end the procedure whenever appropriate.
e Flexible threshold sorting strategy (M 3)
First set g = 1 and Ay = A. Choose f3, satisfying B. < B, < *, where §*
is determined by P(A,) and assign Eff (Ag,8,) to Sg. The DM may wish
to adjust B, upward (respectively, downward) to reduce (increase) the size of
Sg. Then Agyy = Ay~ S,. If Agyy = 0, then g = m and the procedure
terminates. Otherwise, the DM has the choice of assigning Ay4; to Sg41 and
terminating the procedure at m = g + 1, or iteratively repeating the above
procedure with g increased by 1. Note that M3 produces smaller groups than
M1 and larger groups than M2; of course, the DM can minimize or maximize
the size of a sorting element by switching to M1 or M2. Also, unless the
DM terminates the procedure by assigning all unassigned alternatives to the
next group, the group count in M3 is intermediate between the group counts
of M1 and M2. The discussion above, including Lemma 3.2, shows that the
value of 3* increases at each step, though of course §; may remain constant,
or decrease, if the DM wishes to maximize the size of the next sorting element.

In summary, the composition and size of the sorting elements, as well as the
group count, can be influenced by adjusting the indifference threshold input, 3, in
the sequence of sorting steps suggested above. The extremes are M1 and M2; we
recommend M3 for the flexibility it can achieve. For example, it is usually possible
to achieve (approximately) particular sizes of sorting elements, as may be required
for budgetary or other practical reasons. Next, this flexibility is demonstrated using
a case study in inventory classification.

4. A case study in inventory classification. As the globalization of business
accelerates, firms increasingly need efficient and effective inventory management
to maintain competitive advantage (22, 23]. Many research initiatives investigated
different scenarios and designed various optimal inventory management solutions
(10, 15, 27]. It is widely accepted that the basis of a sound inventory control scheme
is a sorting of stock-keeping units (SKUs) into meaningful and manageable groups,
so that different inventory policies can be designed for each group according to its
importance to the firm and other relevant characteristics [2].

4.1. Background. This case study uses data provided by Flores et al. [11] for
a hospital inventory management problem which has been investigated by several
researchers using different approaches. For example, Chen et al. [6] proposed a
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case-based distance approach to sort SKUs into three groups; Ramanathan (16]
examined the same problem using a DEA model but his method is fixed for a three-
group sorting and only considers the preference uncertainty of criterion weights. All
previous methods applying to this problem are limited to a three-group sorting and
do not provide a flexible sorting procedure.

The SKUs in this case study are the 47 disposable supply items required by a
hospital-based respiratory therapy unit, which in the original study were classified
using AHP [20]. The four criteria were defined as follows:

e Average unit cost (AUC) ($), which ranges from $5.12 to $210.00;

e Annual dollar usage (ADU) ($), which ranges from $25.38 to $5840.64;

e Lead time (LD) (weeks), the time for replenishment of an SKU after ordering,
which ranges from from 1 to 7 weeks.

Criticality factor (CF), 1, 0.50, or 0.01: a value of 1 indicates that an item is
very critical, a value of 0.50 that it is moderately critical, and a value of 0.01
that it is non-critical;

Based on this information, AUC, ADU and LD are treated as cardinal criteria
and identified as I§, I§ and I3, respectively. However, CF is treated as an ordinal
criterion, and identified as I7, since the values seemed easier to interpret as ordinal
information only. Thus, SKUs with a CF value of 1 are assigned the best grade, L,
on I?, SKUs with a CF value of 0.50 are assigned the second grade, Ly, and SKUs
with value of 0.01 are assigned the worst grade, L3. The consequences of SKUs A!
through A*7 on these four criteria, with L;, Ly and L3 represented using 1, 2, and
3, respectively, on criterion 7, are shown in Table 4.1.

4.2. Values acquisition and processing. The consequence information in Table
4.1 is processed according to the definitions and constraints (3)—(6). The value
information is shown in Table 4.2. Since the value of o has not yet been set, the
value of alternative A* on ordinal criterion I{ is simply denoted v}; note that this
value must satisfy constraints (5) and (6).

Also, it is assumed that the DM requires that criterion ADU receive more im-
portance than any other criterion. Hence, conditions (10) apply, which imposes the
constraints w§ — wf > B, w§ — w§ >  and w§ — w} > [ on any sorting.

4.3. Lower bound sorting. The software Lingo [14], a comprehensive tool de-
signed to solve linear, nonlinear and integer optimization models, is used to conduct
the calculations in the case study. Firstly, sorting method M1 in Section 3.4, based
on the lower-bound threshold, is applied first. It is a good idea to adopt this method
first, as it establishes the minimum group count—if fewer groups are required, it

will be necessary to curtail a procedure. Following the advice above, f, is set at

4
1x107% and J = 2 -;—q =3 The detailed computation is omitted. The results

are shown in Figure 3. But the DM may not be satisfied with this sorting, since
S-. the group of SKUs requiring the greatest management attention, contains over
half of all SKUs, and is by far the largest element of the sorting.

44 Flexible threshold sorting. Method M3 is now applied twice. The objec-
Ives are to achieve a three-group sorting and a four-group sorting with specified
arget sizes for the sorting elements, and then to compare the sortings to ensure
= Csistency.
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Criteria
SKU If (AUC, $) IS (ADU, $) I5(LT, weeks) I7 (CF)
Al 49.92 5840.64 2 1
A? 210.00 5670.00 5 1
A3 23.76 5037.12 4 1
Al 27.73 4769.56 1 3
A® 57.98 3478.80 3 2
AS 31.24 2936.67 3 2
A7 28.20 2820.00 3 2
A8 55.00 2640.00 4 3
A® 73.44 2423.52 6 1
A0 160.50 2407.50 4 2
A4 5.12 1075.20 2 1
A2 20.87 1043.50 5 2
Al3 86.50 1038.00 7 1
A4 110.40 883.20 5 2
A8 71.20 854.40 3 1
ALE 45.00 810.00 3 9
A7 14.66 703.68 4 2
A 49.50 594.00 6 2
A9 47.50 570.00 5 2
A20 58.45 467.60 4 2
AR 24.40 463.60 4 1
A 65.00 455.00 4 2
A2 86.50 432.50 4 1
A% 33.20 398.40 3 1
A% 37.05 370.50 1 3
A 33.84 338.40 3 3
AT 84.03 336.12 1 3
A% 78.40 313.60 6 3
A%® 134.34 268.68 7 3
A®0 56.00 224.00 1 3
AR 72.00 216.00 5 9
A 53.02 212.08 9 1
A8 49.48 197.92 5 3
A 7.07 190.89 7 3
A3 60.60 181.80 3 3
A% 40.82 163.28 3 1
A% 30.00 150.00 5 3
A3 67.40 134.80 3 2
A3 59.60 119.20 5 3
A 51.68 103.36 6 3
A4 19.80 79.20 9 3
AR 37.70 75.40 2 3
AL 29.89 59.78 5 3
b 48.30 48.30 3 3
A% 34.40 34.40 7 3
A% 28.80 28.80 3 3
AY 8.46 25.38 5 3

TABLE 1. SKUs Information, adapted from Flores et al. [11]



