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Bangyi LI

Zhaohan SHENG

College of Economics and Management, Nanjing University of Aeronautics and Astronautics
Nanjing 210016, China
Graduate School of Management Science and Engineering, Nanjing University
Nanjing 210093, China
libangyi@263.net

Abstract

Let G=<V, E, L> be a network with the vertex set ¥, the edge set £ and the length vector L, and

let 7" be a prior determined spanning tree of G. The inverse minimum spanning tree problem with

minimum number of perturbed edges is to perturb the length vector L to L+ , such that 7" is one of

minimum spanning trees under the length vector L+ & and the number of perturbed edges is minimum.

This paper establishes a mathematical model for this problem and transforms it into a minimum

vertex covering problem in a bipartite graph G, , a path-graph. Thus a strongly polynomial algorithm

with time complexity O(mn?) can be designed by using Hungarian method.

Keywords: Inverse network optimization problem, minimum spanning tree, vertex covering set

|

1. Introduction

Pérhaps the inverse network optimization
problems were first introduced by Burton and
Toint (1992). They studied the inverse shortest
path problem under L, norm and provided
some applications of this problem in traffic
models and transportation networks. They also

discussed the inverse shortest path problem

under I; norm and showed that this problem

is NP-complete if the perturbation of every
edge is bounded (Burton and Toint 1994).
Since then, more and more researchers have

been interested in the inverse network

ISSN 1004-3756/03/1203/350
CNI11-2983/N ©JSSSE 2003

optimization problems and the studied field has
been extended to other inverse network
optimization problems, for example, Xu and
Zhang (1995) considered the inverse weighted
shortest path problem; Sokkaling (1995)
studied the inverse minimum cost flow
problem underZ;, L, and L, norms; Yang
and Zhang (1998) investigated the inverse
maximum capacity problem. Recently, Huang
and Liu (1999) discussed the inversé linear
programming problem and gave some
applications to the minimufn perfect
k-matching problem in bipartite graph. This

paper will introduce inverse minimum
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spanning tree problem with the objective of
minimum number of perturbed edges and
transform it into minimum vertex covering set
problem in bipartite graph.

The minimum spanning tree problem is a
well-studied problem in network optimization,
hence its inverse problems are also attractive in
inverse network optimization field. Let G=<V,
E, L> be a network with the vertex set V
([¥|=n), the edge set E (|E|=m) and the
length vector L, let T* be a prior determined
spanning tree of G. The general inverse
minimum spanning tree problem is to perturb
the length vector L to L+&, such that T° is
one of minimum spanning trees under
L+ 6 and objective function "5||p is
minimum.

Based on our knowledge, L, norm, L,
norm and L, norm are three popular choice
for objective functions. Zhang and Liu (1996)
presented the first paper about inverse
minimum spanning tree problem. Sokkalingam
(1999) studied the inverse minimum spanning
tree problem under Z; norm and L, norm.

In this paper, we introduce the number of
perturbed edges as a new objective function in
inverse minimum spanning tree problem, i.e.,

the objective function is
’{ej :5j =0, e; € E}’ .

The aim of this problem is to perturb the
length of edges to ensure that the prior
determined spanning tree 7T  is one of
minimum spanning trees and the number of
perturbed edges is minimum. Considering the

number of perturbed edges as an objective

function is very significant and this kind of
problems has strongly practical background in
network design problems.

We first establish mathematical model of
inverse minimum spanning tree problem with
minimum number of perturbed edges and then
prove that this problem can be transformed
into minimum vertex covering set problem in a
bipartite graph G, =<E, UE,,4,> arisen
from the original network. So Hungarian
method can be exploited as a subroutine to
design an algorithm for this problem with time
complexity O(mnz) :

2. Establishment Process of the
Mathematical Model

In this section, we want to establish
mathematical formulation of inverse minimum
spanning tree problem with minimum number
of perturbed edges and reveal some properties
of the mathematical model which play an
important role in our algorithm. Let us adopt
the network terminology and notation given by
Bondy and Murty (1978).

Assume that G=<V, E, L> is an undirected
network and that 7% is a prior determined
spanning tree of G. Let E(T") be the edge set
of T*. The task we face with now is to
determine whether 7° is a minimum
spanning tree of G. If the answer is “yes”, then
stop. Otherwise, we perturb the length vector L
to a new length vector L+& , such that 7° is
one of minimum spanning trees of perturbed
network G =<V.EL+0> and
simultaneously, the number of  perturbed

edges from G to G’ is minimum, i.e.,
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|{e; :6; #0,e; € E} | is minimum.

Noticing that every spanning tree of G
always has n—1 edges, without loss of the
E(T") =

{e;,e,, +,e, 1} and the length parameter /

generality, we assume that

for every edge ¢; € E satisfies [, >0.
Definition 1 Refer to the set of all the edges in
T® as tree-edge set denoted by E, and the
set of all the edges in E\E(T") notree-edge set
denoted by Es, e,

E ={e;:e, € E(T")}and E, = E-E,.

Based on the Properties of spanning tree,
we know that for an arbitrary notree —edge e, ,
there exists a unique path in 7° that connects
the two vertices of edge e;. So we give the
next definition which is the key step to
establishing our model.

Definition 2 Forany e; € E, , let P,={¢;:¢
is the edge in the unique path in 7" that
connects the two vertices of edge e, }.

To establish our mathematical model, we

need a rule to determine whether the given
spanning tree T is a minimum spanning tree
under perturbed length vector L+ .
Lemma 1 (Bondy, 1978) The necessary and
sufficient condition for T" to be a minimum
spanning  (ree in  perturbed  network
G'=<V,E,L+6> is that for any
e; € E, and forany e € P,

i +6;<1;+6;,

where 6 =<6,,0,,-,0, > is one perturbed
value vector and &; is perturbed value of
edge e;, 1< j<m.

From the original network G to the
perturbed network G, the set of perturbed
edges is clearly {e; :6; #0,e; € E}.

From Definition 1, Definition 2 and
Lemma 1,7 we can formulate the inverse
minimum spanning tree problem with
minimum number of perturbed edges as the
mathematical

following non-linear

programming:
Minimize |{e; : J; # 0,e; € E} |

Subject to:
i +6;<l;+J;,, € Pj,e; € E, (1)

6; isunrestricted, 1< j<m.
For simplicity, we use ||, to denote
|{e; :6; #0,e; € E} | in what follows.
Proposition 1  Assume that & =
<98,,0,,-,6, > is an optimal solution of
Sformulation (1). Then 6,<0 for all
e, €Eand 6;20 forall e;€E,.
Proof. Assume on the contrary that there is a
e, € E , such that 6, >0 in the optimal
solution &°. By optimal perturbed vector &°,

we construct a new perturbed vector
o' =<6/,85,",0,, >
in the following way that &;=0and &} =J;

if j#i. Note that & also satisfies all the

constraints of formulation (1), but

[, =}e*

-1,

=

1

which contradicts the optimal property of & .
This proves the first claim.
A similar proof can be given for the second

claim.
=

From Proposition 1, we obtain a variant of
formulation (1) and restate this variant in the

following formulation :
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Minimizel{ej 18, #0,1< j<m}

Subject to:
;-6,<1;+6;, ¢€P, e €k,
¢ 20, forall g € E 2)

; 20, forall e; € E,

Now we investigate the constraints in
formulation (2). If there exists an ¢ € P,
which satisfies [, </,
li=6;<l;+6; is ftrivial, since any

then the inequality

nonnegative perturbed vector & satisfies
automatically inequality/, —6; </;+6;. So in
the remainder of this paper, we always assume
that /; >/, for all ¢e€P, and e, €k, ,
otherwise, delete ¢; from set P;.

Observing that every constraint in
formulation (2) is a contrast relation between
tree-edge length and notree-edge length, we
then define a new graph G, to show this
contrast relation.
Definition 3 Let

where

Gy =<E|,VE,, 4, >,

Ay ={<e.,e; > ¢ e Pje; € E,}.

G, 1s termed as path-graph in this paper.
From Formulation (2) and Definition 3, we
know that there is a one-to-one correspondence
between the edges in G, and the constraints
in formulation (2).
Denote neighbor set of vertex e; in graph
Gy by Ng (g)forall ¢ eE.
Proposition 2 Assume that 6 = <6,,6,,
--,0, > Is an optimal solution of formulation
(2. If 6,>0 , then
e; €Ng (¢),6,=0 , for some ¢ €k .

Similarly, if 6;>0 , then there exists an

there exists an

e; € Ng (e;),6, =0, for some e; € E,.

Proof. We proceed by contradiction.

Let &' =<§,,5,,--,8, > be an optimal
solution to formulation (2) and assume that
there exists an e; € E,, such that 6, >0 and
8;>0 forall e; € Ng (¢). 5" is a feasible
solution of formulation (2) and automatically
satisfies the following inequalities:

i—6;<1;+6;, ¢€P;, e; €k,
0,20, ¢ €E

6;20, e; €k,
Now utilizing &°, we construct a new
vector & =<9,,8,,++,8, > in the following

way that:
gx;os gk =6, ¢ €E \{e;};

S-'j =0,;+09,; foralle; € Ng (e),

and

5, =5, forall e; e E,\{Ng (¢)}.

From the above construction progress, it is
obvious that & also satisfies all the constraints
in formulation (2), but
5*

1, -l -1

1

This contradicts the optimal property of
S5 .
The second claim can be proved in the
same way.
#
Proposition 3 Suppose that & = <§,,6,,
-++,0, > is an optimal solution of formulation
(2). Calculate a =max{d;:e; € E;} and =
max {J;: e€k,} from 8. Then construct a

new vector

J = <§1,§2,---,3m .

in following way:
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,Jorall e €E,;

i

- a if6,>0
0 otherwise

j Jorall e; € E,.

5 ={ﬂ if §,>0

0 otherwise

Then & is also an optimal solution of
Sformulation (2).

Proof. In the inequalities [, —6; </;+6;, if
6,>0, then substitute &, for a; if 0 >0,
then substitute &, for 5. After the progress
of substitution, the inequalities are all

preserved, and

51

|51, -

So we can claim that § is also an optimal

2

solution of formulation (2).
=
Proposition 3 implies that we can make the
optimal solution uniformed by only two

nonzero number @ and £.

3. Main Result and Algorithm

In this section, we want to design a strongly
polynomial algorithm for solving the
formulation (2). Our algorithm depends on the
concept of minimum covering set in bipartite
graph.

Definition 4 Let G=<V, E> be a bipartite graph
with the vertex partition V=V, UV, . Let M be a
subset of edge set E. If arbitrary two edges in
M are not adjacent in G, then M is called a
matching set. Let C be a subset of vertex set
V, UV,. If every edge in G has at least one
vertex in C, then C is called a vertex covering
set.

Lemma 2 (Bondy, 1978) For any bipartite
graph G, | M* |=| C* |, where C" is a

minimum cardinality vertex covering set and
M" is a maximum cardinality matching set.

After the above preparing work, we now
give the main result of this paper.

Theorem1 |&5°

l=|C'| for any optimal

solution &  of formulation (2) and any
minimum vertex covering set C'of bipartite
graph G,, where | C" | is the cardinality of set
.

Proof. Assume that

0 =<8,8, 0, >

is an optimal solution of formulation (2),
which has been uniformed by two nonzero
numbers « and S . Then construct two vertex
subsets X and Y of bipartite graph G, as
follows:
X={¢:0, =a,forall ¢ € E} and
Y={e;:6; =p, foralle; € E,}.

We can conclude that X UY is a vertex
covering set of G, . From the definition of Gy,
we know that /; >/, for all <e;,e; >€4,.
Since & is a feasible solution of formulation
(2), we also have that

l;—-6;<l;+6,forall<e,e; > 4.

The two inequalities above mean that at
least one of o; and é'j is greater than 0, i.e.,
at least one vertex of every edge in G, is
covered by XUY. So XuUY is a vertex
covering set of bipartite graph G, . This

where C* is a minimum vertex covering set

implies that

5" C

L]

=1x1+r

of bipartite graph G .
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On the other liand, we assume

*® t 3 3 . . - -
C' =X UY is a minimum vertex covering

set of bipartite graph Gy, where
X"cCE,Y'CE,.

Construct a perturbed vector
0 =<0,,0y,",0, > as follows:

a eeX’
o; ={ forall e, € E| ;

I

0 ¢eE\X"
B e eY

o; = / foralle; e E,,
0 ejeE?_\Y‘

where

a=max{l,~1; e €X",e; € E;}>0,

p=max{l, -1, :¢ € Ee; eY"}>0.

Since C* is a covering set of G, it

follows that for every edge <e;,e; >€ 4,, we

127

have ¢, € X" or e; €Y". This means that at
least one of &; and &, is greater than 0.
From the definition of &, and &, , the

inequality
,—6;<1;+6;

is obviously satisfied. This implies that the
vector & is a feasible solution of formulation

(2). We then have that

‘5* +|Y*|=|C”

<lal,=|x°

]

where &° is an optimal solution of

formulation (2).

| Summarizing the above analysis, we claim

that

where & is an optimal solution of

* JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 12, No. 3, September, 2003

formulation (2) and C*is a minimum vertex
covering set of bipartite graph G .
m

In fact, the proof of theorem 1 establishes a
one-to-one  correspondence between the
optimal solution of the formulation (2) and the
minimum covering set of bipartite graph G .

Up to now, the inverse minimum spanning
tree problem with minimum number of
perturbed edges has been transformed into
minimum vertex covering set problem in
bipartite graph G, . Hungarian method is well
known as a good algorithm to solve minimum
vertex covering problem in bipartite graph.
This implies that Hungarian method can be
used as a subroutine to design our algorithm.

Combining Theorem 1 and Hungarian
method, we now present our algorithm for
solving the inverse minimum spanning tree
problem with minimum number of perturbed
edges. This algorithm is termed as
(inverse-MST-1) algorithm.

(Inverse-MST-1) Algorithm:

Step 1 From the original network G=<V, E,
L> and the prior determined spanning tree T*,
construct the bipartite graph G .

Step 2 Take Hungarian method as a
subroutine to solve the maximum matching
problem in Gop. Let M* denote the maximum
matching set obtained by Hungarian method
and V(M") denote the vertex set labeled as
Hungarian tree in G, .

Step 3 Construct a minimum vertex
covering set C* = X"UY", where X' =
E,nV(M*) and Y =E,\V(M").

Step 4 Based on C", construct an optimal

solution of formulation (2)
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5. = <§1,§2,"‘,§m >

in the following way:

a, eeX’
o; = and
0, e e E\NXT

B, e eY"
§j= / *,where
0, e ek \Y

a=max{l,~1;:¢,€ X ,e; € E,} and

B=max{l;~1;:¢, e E e €Y'},

We now analyze the running time of

(inverse-MST-1) algorithm. The running time
of Step 1 is O(mn). Step 2 and Step 3 is
Hungarian method and its running time is
O(mn®), for |E1[=O(n) and IE2|= O(m—n),
where m is the edge number and n is the
vertex number in the original network. The
running time of Step 4 is O(mn ). So the total
time‘corﬁplexity of (inverse-MST-1) algorithm
is O( mn? ).
Corollary 1 The inverse minimum spanning
tree problem with minimum number of
perturbed edges can be solved in O(mn®)
times.

Thedrem 1 also gives the following result
as a by-product.

Corollary 2 In optimal solution & of
Jormulation (2), o6; 6, # 0 for edge
<e,e; >€ 4, if and only if there exists a
minimum covering set C* of G,, such that
two vertices of edge <e,e;> are both
covered by C”. |

Proof. From theorem 1, we know that there is
a one-to-one correspondence between the
opticaal solution &  and the minimum
covering set C* of bipartite graph G, .

356 JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 12, No. 3, September, 2003

In optimal solution &",8; &; # 0 for edge

<e,e; >4y & 6; #0,

6; #0< eeX ,e; el

where C*=X"UY"is a minimum covering
set based on optimal solution & < two
vertices of edge<e;,e; > are both covered by
C*.
u
We now use the following numerical
example given in Figure 1 to illustrate the
construction process of the bipartite graph G,
and the computational process of (inverse
-MST-1) algorithm. Note that, in figure 1,
every edge has been labeled and its original
length is given in the blank. The edges in
T" are drawn in thick and black line. It is easy
to test and to verify that the spanning tree T~
is not a minimum spanning tree of G with
respect to the given length. To make 7~ a
minimum spanning tree with minimum number
of perturbed edges, we must put the original
length I, of every edge e, a small

J J
perturbation 6,,1<j<10.

V, €, (2) V,

e, (19 2 (17)

7o (16)

v, e, (5) Vs

Figure 1 Gand T*
The process of (inverse-MST-1) algorithm

S S R AR EY - SO S —

ikt sl i Mok it
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is showed as follows.

Step 1 From the original network G in
figure 1, we know that E,={¢ ,e,,6;,€;,65},
E,={e,e;,€,e,e€,}. From the special
structure of 7, we know that F,={e¢,e, },
B={e,e,}, =K =0 and Ry={ey,es}.

By e(e€kE) and P, ( e €k, ),
Gy, =<E,UE,,4y,> can be constructed as
shown in Figure 2.

Step 2 Using Hungarian method as a
subroutine to solve the maximum matching
problem of G, . The computational result
shows that M* = <e ,e >, <e,, e >,
<e,,€,>} (drawn in black and thick line in
Figure 2) and V(M")={e,,e,,e,,€5,¢5,¢€;,
e} (V(M") is obtained from the last labels

of Hungarian spanning tree showed in Figure
2).

6 ¢ €y 2

Figure 2 The Path-graph G,
Step 2 Using Hungarian method as a

subroutine to solve the maximum matching
problem of G, . The computational result

shows that M™ = <¢ ,e >, <e ,e >,

<e4,€,>} (drawn in black and thick line in
Figure 2) and V(M")={e,,e,,¢e,,¢5,€5,¢€;,
ep} (V(M") is obtained from the last labels
of Hungarian spanning tree showed in Figure
2).

Step 3 Using ¥( M* ) construct the
minimum vertex cc‘)vering set C'=X"UY".
The computational result is C"={e,,e;,¢}

for

X' =EnV(M)=4¢,

Y‘ =E2\V(M.) = {86,37,'810}.

Step 4 Using C”, construct the optimal
solution §° of formulation (2).

The computational result is that a =0, 5 =
11,and 6=<0,0,0,0,0,11,11,0,0, 11>,

From the perturbed vector &°, we present
the perturbed network G'=<V,E,L+6 >
in Figure 3. It is easy to verify that the prior
spanning tree 7" is a minimum spanning tree
of G' and the number of perturbed edges
from Gto G' isonly 3.

v, e;(2) V,

v, e, (16) Vs

Figure3 G' =<V,E,L+6" >
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4. Conclusions and Further
Research Work

In this paper, we have discussed the inverse

minimum spanning tree problem with
minimum number of perturbed edges. Using
the concept of path-graph, we prove that this
problem can be transformed into minimum
vertex covering set problem in bipartite graph
G, . This is the key idea to designing strongly
polynomial time algorithm, since Hungarian
method can be used as a subroutine to solve
this problem. The main result of this paper is a
strongly polynomial algorithm,
inverse-MST-1

complexity is O(mn?).

1.e.,
algorithm, whose time

The authors in (Sokkalingam, Ahuja and
Orlin, 1999) studied the inverse minimum
spanning tree problem with [, norm, i.e., the

objective function is

of, = 2 &+ 2 9;.

" [IL' e, ek, e, ek, 4
Combining L; norm and the number of
perturbed edges, we then propose a biobjective

inverse minimum spanning tree problem as

follows:
C e =015 <m
Minimize Y 5+ 3 5j
ek, e;cE,
Subject to:

;-6,<l;+6;,, ¢€P, e €k,
0,20, forall ¢ € E, 3)
6; 20, foralle; € E,

Up to now, the complexity status of the

above biobjective inverse minimum spanning

tree problem is still an open problem. Is this

problem polynomial time solvable, or
NP-complete? This problem is worthy of
further researching and we will pay more

attention to it.
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