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Abstract  Stickelberger—-Swan Theorem is an important tool for determining parity of the
number of irreducible factors of a given polynomial. Based on this theorem, we prove in this
note that every affine polynomial A(x) over ' with degree >1, where A(x) = L(x) + 1 and
L) = ZLO x2' is a linearized polynomial over [, is reducible except x2+x+1and
x* 4+ x 4 1. We also give some explicit factors of some special affine pentanomials over F5.

Keywords Finite field - Pentanomial - Discriminant - Resultant

Mathematics Subject Classification (2000) 11T06

1 Introduction

Let IF, denote the finite field with g elements, where g is a prime power. A polynomial of the

formL(x) =D ; a;x9" with coefficients in an extension field Fym of IF, is called a linearized
polynomial over Fym, and A(x) = L(x) — «, where L(x) is a linearized polynomial over
Fym and o € Fym, is called an affine polynomial over IF,m. The weight of a polynomial is the
number of its non-zero coefficients. It is well known that if the weight of f(x) € F,[x] is
small, then the multiplication in F4» can be sped up considerably [10]. Fast arithmetic in finite
fields is important for the efficient implementation of error-correcting codes and discrete log-
arithm cryptosystems. The arithmetic in binary field can be efficiently implemented in both
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84 Z. Zhao, X. Cao

hardware and software, and so it has been received special attention. Many researchers have
studied the irreducibility of polynomials over F,. Swan [12] determined the parity of the
number of factors of trinomials over F,, here a trinomial we mean a polynomial of the form
x" + x¥ + 1. Blake et al. [3] listed all the irreducible trinomials of degree less than 2,000 for
k < 5. Hales et al. [7] presented a Swan-like theorem for binary tetranomials. Ahmadi et al.
[2] studied the number of trace-one elements in a polynomial basis for F», and listed all
irreducible trinomials whose degree less than 1,000 and the corresponding basis has exactly
one trace-one element. Seroussi [11] conjectured that there exists an irreducible pentanomial
of degree n over [F, for each n > 4. By computer search, Ahmadi et al. [2] verified that for
each n € [6,4000] there exists irreducible pentanomial over F,. Using the Stickelberger—
Swan Theorem, Kim et al. [8] established the relation between the discriminants of composed
polynomial and the original ones, and then applied this to obtain some results concerning the
parity of the number of irreducible factors for several special polynomials over finite fields.

In this note, we focus on studying affine polynomials A(x) = L(x) + 1, where L(x) =
> o x? is alinearized polynomial over 2. The remainder of this paper is organized as fol-
lows. In Section 2, we recall some propositions of discriminant and resultant of polynomials.
For completeness, we also give some known results on the properties of low-weight affine
polynomials over finite field. In Section 3, we prove that every pentanomial, the polynomial
of weight five, is reducible over F», and also give some explicit factors of some special
pentanomials. In the final section, we also generalize our results to affine polynomials with
arbitrary weights.

Throughout the paper, when we mention an affine polynomial over F,, we mean that it is
the polynomial A(x) = L(x) + 1, where L(x) is a linearized polynomial over F.

It has to be pointed out that this paper owes its existence to the results of Swan [12] about
the number of irreducible factors of polynomials over IF),.

2 Preliminary results

In this section, we recall some results about the discriminant and the resultant of polynomials
firstly, and then introduce Stickelberger—Swan Theorem. For the sake of completeness, we
also list some known results about the properties of low-weight affine polynomials over finite
field.

Let F beafield. Let f(x) be a polynomial of degree n > 1 in F[x] with leading coefficient
a # 0. The discriminant of f(x), denoted by Disc(f), is defined by

Disc(f) = a2 [T (@i —ap?, (M)
i<j
where «g, oy, ..., a,— are the roots of f(x) (counted with multiplicity) in an extension of
the ground field F. Since Disc(f) is a symmetric function with respect to the roots of f(x),
Disc(f) € F.
Let g(x) € F[x], and suppose f(x) = a H::Ol (x — ;) and g(x) = b]_[l'-";()] (x — Bi),
where ag, @1, ..., a,—1, Bo. B1, ---, Bm—1 are in an extension of F, and a, b are not zero.

The resultant of two polynomials f(x) and g(x), denoted by Res(f, g) [9], is defined by

n—I1 m—1

Res(f,g) =a™ [ gl@) = (=1)""b" [ ] (8. )

i=0 i=0

By the definitions of discriminant and resultant, we have the following propositions.

@ Springer
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Proposition 2.1 ([9]) Let f(x) be defined as above, and let f "(x) be the derivative of it.
Then

Disc(f) = (=1)"T"a"'Res(f, f). 3)

Proposition 2.2 ([12]) Let f(x), g(x) be defined as above, and g1(x), g2(x), q(x), r(x) €
F[x]. Then we have

(1) Res(f,x) = (=1)"f(0), Res(f, —x) = f(0);

(2) ifc,d are constants not both 0, then Res(c,d) = 1;

(3) Res(f, g182) = Res(f, g1)Res(f, g2);

@) iff(x) = gx)q(x)+r(x), then Res(f, g) = b"—4e8() Res(r, g), where b is the leading
coefficient of g(x) and deg(r) is the degree of r(x).

There is another definition of the resultant of two polynomials over field F, which is cru-
cial for our prove of the main results. Let f(x) = a,x" +ap_1x" V.. -+ajx+ap € Flx],
and g(x) = bpx™ +bpy_1x" V4. .4+ b1x+bg € F[x]be two polynomials with a,b,, # 0.
Then the resultant Res( f, g) of the two polynomials is defined by the determinant

/an an_l DI al aO 0 ce O\
0 a, ap—1 -+ a1 ap--- 0 b M TOWS
B 0o --- 0 an ap—1 --- a1 ao i
Res(f, g) = det b By ane Bp By 0 s-o D
0 bm bm—l bl bO == 4 r 1 TOWS
\0 0 bmbu_1--- b bO) J

of order m + n [9].
The next theorem, which is called Stickelberger—Swan Theorem, is our main tool for

proving the reducibility of affine pentanomials over .

Theorem 2.3 (Swan[12]) Let f(x) € F2[x], and suppose that Disc(f) # O, that is, f(x)
has no multiple roots. Let t denote the number of irreducible factors of f (x) over F. Assume
that F (x) € Z|[x] be any nomic lift to the integers. Then t = deg( f)(mod 2) if and only if
Disc(F) = 1(mod 8).

Both in theory and in applications the linearized polynomials and affine polynomials over
finite field are of importance. For completeness, some known results on the properties of
low-weight affine polynomials over finite field will be listed. A trinomial is a polynomial
with weight three. In what follows, we consider trinomials that are also affine polynomials.

Theorem 2.4 ([9]) Let a € F, and let p be the characteristic of F,. Then the trinomial
xP — x —ais irreducible in Fy|x] if and only if it has no root in Fy.

By the Hilbert’s Theorem 90 and above theorem, we can get that the trinomial x? — x —a
is irreducible in Fy [x] if and only if Tz, (a) # 0, where Tr, is the trace from F, to IF,. If we
consider more general trinomials of the above type for which the degree is a higher power
of the characteristic, then these criteria need not be valid any more. In fact, the following
decomposition formula can be established.

Theorem 2.5 ([9]) For x¥ —x —a with a being an element of the subfield K = F, of F =T,
we have the decomposition x4 — x —a = Hj’/:' | &7 — x — B;) in Fy[x], where the B; are
the distinct elements of Fy with Tr g () = a.

@ Springer
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We note that the ordinary product of linearized polynomials need not be a linearized poly-
nomial. However, the composition Lj(Lz(x)) of two linearized polynomials L{(x), L2(x)
over Fym is again a linearized polynomial over Fyn. In fact, the set of linearized polynomials
over F, forms an integral domain under the operations of ordinary addition and composi-
tion. Using this fact, we can get many useful properties of linearized polynomial over .
By the relation between the discriminants of composed polynomial and the original one,
Kim et al. [8] determined the parity of the number of factors for f(x* + x + 1), where
f(x) =x"F a1 4 ... +a, 1x +a, € Blx).If f(x) is a binary polynomial defined as
above, we call F(x, y) = x"+a1x" 'y+---+a,_1xy" ' 4+a,y" € Z[x, y] ahomogeneous
polynomial in two variables derived from f(x).

Theorem 2.6 (Kim[8]) Let f(x) = x" + ax" 1+ ...+ a,_1x +a, € Fo[x] be a binary
polynomial with no multiple roots. Then the composition f (x2 + x + 1) € Fa[x] also has
no multiple roots. In this case assume that f(x*> + x + 1) has t irreducible factors over F».
Then t is even if and only if (—1)"F(3,4) = 1(mod 8), and t = n + a;(mod 2) where F is
a homogeneous polynomial corresponding to the monic lift of f (x) to the integers.

It is obvious that if f(x) € Fa[x] is irreducible over 2, then the coefficient of x"~! is equal
to 1 if and only if the degree n of f(x) is an even. Kim et al. applied above theorem to
trinomials over [F» to obtain the following conclusion.

Theorem 2.7 (Kim[8]) Let f(x) = x" + x* + 1 € F[x]. If f(x) has no multiple roots,
then the composition f(x?> 4+ x + 1) has an even number of irreducible factors over Fy in
the following two cases

(1) n—k=1andn is odd,

(2) n—k > 2andn is even.

3 The reducibility of affine pentanomials over [,

Let A(x) = x4+ x2"% 4 x2" 4 x2™ 41 be an affine pentanomial over F,, where n; >
ny > n3 > ng4 > 0.If ng > 1, then A(x) is a square of a pentanomial, so we may assume
that ny = 0, that is, A(x) = x2"" 4+ x2? + x¥” + x + 1. By the table of [11], there are
no irreducible affine pentanomials over F;[x] with 2" < 10,000, that is, n; < 14. In this
section, we prove that every affine pentanomial over I3 is reducible. The next theorem is one
of our main results.

Theorem 3.1 Let A(x) = x2"" +x2? +x2° + x + 1 be an affine pentanomial over 3,
where ny > ny > n3 > 1. Then A(x) is always reducible over IF5.

Proof Since the coefficients of A(x) are all equal to 0 or 1, let A(x) = A(x) be the lift of
A(x) to the integers. By Theorem 2.3 we know that if Disc(A) = 1(mod 8), then A(x) has
an even number of irreducible factors over IF2 and thus is reducible. Therefore in the next
sequel, we concentrate on computing the discriminant of A (x). First, we assume that n3 > 3.
By Proposition 2.1, we have

Disc(A) = Res(A, A’) = Res(A, 152" =1 4 onz 2721 4 2m3 52~ 4 1). 4)
Since n; > ny > n3 > 3, we have 2" = 2"2 = 2"3 = 0(mod8) and
Disc(A) = Res(A, 1) = 1(mod 8). (5)

Using Theorem 2.3, we get that A(x) is reducible over F, when n3 > 3.
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For the sake of completeness, we need to study the remainder three cases, that is,

Case l: n3=1,n,=2;
Case2: n3 = 1,ny > 2;
Case 3: n3 = 2.

Case 1 Similar to n3 > 3, we can get
Disc(A) = Res(A, A') = Res(A,2Mx2" "1+ 4x3 +2x + 1). (6)
We note that ; > 3, (6) can be written as
Disc(A) = Res(A, 4x> + 2x + 1)(mod 8). (7

In what follows, we focus our attention on computing a determinant. By the second definition
of the resultant of two polynomials, we get a determinant

100000---010111 0 0)
010000---00101110
001000---000101 1 1
) 402100---000000 0 0
=9 = — —
Bestd sy 2+ H=aet | g 4 591 0+ 000000 0 0] =2
004021---000000 0 0
\0 0 0000---000040 2 1)

of order 2" 4 3.
Multiplying the first row by 4 and adding it to the 4th row of A, the element in the 4th
row and the first column vanishes modulo 8, so we obtain

100000---010111 0 0
010000---001011 10
001000---000101 1 1

B 002100---040444 00

A=det] 5 4 0210.--000000 0 0 | @4®):
004021---000000 0 0
\0 0 0000---000040 2 1)

Multiplying the third row by 6 and adding it to the 4th row, the element in the 4th row and
the third column vanishes modulo 8. Therefore, using this method step by step, we obtain
an upper-triangular determinant with the elements in the main diagonal are all 1’s modulo 8.
Thus we have Res(A, 4x> + 2x 4+ 1) = 1(mod8).

Therefore, we have Disc(A) = 1(mod8).

Case 2 Similarly, we have
Disc(A) = Res(A, A') = Res(A, 2x + 1)(mod 8). 8)
Similar to Case 1, we get a determinant

10000--010---001 1 1
21000---000---000 0 0

- . 102100--000---000 0 0
RestA, 2x+ D =det] 66 210...000---000 0 0
00000:-000--000 2 1
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which the order is 2! 4 1. Using above method step by step, we also obtain an upper-trian-
gular determinant with the elements in the main diagonal are all 1’s modulo 8. Thus we have
Res(A, 2x + 1) = 1(mod8). Therefore, Disc(A) = 1(mod8).

Similarly, we can get that Di sc(A) = 1(mod8) under condition n3 = 2. In fact, we only
need to compute the determinant

000---0100---010011
000---0010---001001
100---0001---000100
010---0000---000000
001---0000---000000

Res(A, 4x> + 1) =det

S, OO =
OO~ O
C O == O
S O = QO

o

\0 0 000---0000---000040

1)
of order 2"! + 3, and the method of computation is the same as above.
By Stickelberger-Swan Theorem, the desired result follows and we complete our proof.
O

Since every affine pentanomial over [ is reducible, can we give some explicit factors
of it over F,? In what follows, we answer this in the positive for some particular affine
pentanomials over F».

Obviously, 2" = 2(mod 3) if n is odd, and 2" = 1(mod 3) when »n is even. Therefore,
we can get that if »n is an odd number, then 2 = x2(mod x3 + 1) over F,, otherwise
x?" = x(mod x? + 1). Hence we have following proposition.

Theorem 3.2 Let A(x) = x2"' +x2? +x2° 4+ x + 1 be an affine pentanomial over 3,
where ny > ny > n3 > 1. If the number of odd numbers in ny, na, n3 is odd, then A(x) has
x%2 4+ x + 1 as an irreducible factor of A(x) over 5.

Proof If the number of odd numbersinny, ny, n3 is odd, then A(x) = x24x+1(mod x3+1)
over F,. Since x2 + x + 1 divides x> + 1, we can get our conclusion. O

Remark 3.1 When the number of odd numbers in n1, ny, n3 is two or ny, ny, n3 are all even
numbers, the situation is complicated, sometimes A (x) has x*+x +1 as an irreducible factor,
and we can find a necessary condition for x* 4+ x + 1|A(x) but we cannot find an explicit
factor of A(x) in general. However, we have the following result.

Theorem 3.3 Let A(x) = x¥"' + x?? 4+ x?” + x + 1 be an affine pentanomial over F»,
where ny > ny > n3 > 1. If there exists integers t,t' with0 <t < t’' suchthatn; = ny =

y t
n3 = 2"(mod 2"), then )(22 + x + 1 is an factor of A(x) over FF.
Proof We can rewrite A(x) as
AR =" +x+ D+ +x+ D+ G2 +x + D), )

2f n /
Thus we only need to prove that x>* + x + 1 divides x2* +x + 1 over F, if n = 2" (mod 2").
Let n = 2" m + 2'. Then the result is trivial when m = 0. Now

n 4 ”m !
G 4x+D)—@F +x+D) =" -0, (10)

B1s
Let w(x) be an irreducible factor of x2~ + x + 1 over F, with degree s. By ([9], exercise

3.91), we know that s divides 2!, and so s divides 2" m. Therefore w(x) divides 2 X.

@ Springer
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2 2 m v n .
Thus peal + x + 1 divides x2° " — x and thus divides x> + x + 1, and this completes our

proof. o

For any affine polynomial A(x) = ZLO " +1(ng>ng_1>--->n1>np=0,5s>1)
over [, it is obvious that when s is an even number, A(1) = 0 and thus A(x) is reducible
over Fp. If s = 1, by the result of Swan [12], A(x) is always reducible except et pxt1
and x2 + x + 1. If s > 3 is an odd number, we can also claim that A(x) is reducible by our

methods above.

Corollary 3.4 Let A(x) = > .i_g x2"" 4+ 1 be an affine polynomial over F,, where ny >
ng_1 > --->ny >ng =0, and s > 3 is an odd number. Then A(x) is always reducible

over .

Proof Let A(x) = A(x) be the lift of A(x) to the integers. First, we assume that n; > 3. It
is obvious that

S
Disc(A) = Res(A, A') = Res(A, D_2"x*"~! +1) = Res(A, 1) = 1(mod 8).
i=l
With the Stickelberger—Swan Theorem, A (x) has an even number of irreducible factors over

IF5, and thus is reducible over [F;.
In what follows, we study the remainder three cases, that is,

Casel: nj=1,ny =2;
Case2: ny =1,ny > 2;
Case 3: n; = 2.

Case 1 Similar to Theorem 3.1,
Disc(A) = Res(A, A/) = Res(A, 4x3 + 2x + 1)(mod 8).

Using the second definition of resultant of two polynomials, we only need to compute the
determinant Res(A, 4x> + 2x + 1) of order 2 + 3, and the method of computation is the
same as in Case 1 of Theorem 3.1. Thus we can obtain that Disc(A) = 1(mod 8).

By the method of Theorem 3.1, we can get

Case 2
Disc(A) = Res(A, A') = Res(A, 2x + 1) = 1(mod 8);
Case 3
Disc(A) = Res(A, A') = Res(A, 4x> 4+ 1) = 1(mod 8).
By the Stickelberger—Swan Theorem, A(x) is always reducible under the condition. o

With Theorem 3.1 and Corollary 3.4, we obtain that every affine polynomial with degree
> 1 over IF, is reducible except x2 + x + 1 and x* + x + 1.

Remark 3.2 With the method of Theorem 3.2 and Theorem 3.3, we can get some explicit
irreducible factors of some special affine polynomials over 2. For example, if the number of
odd numbers in |, ny, ..., ng is odd(s > 1 is odd), then x2 + x + 1 is an irreducible factor
of X710 x2" 4+ 1 over Fs.
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This paper is mainly devoted to study the energy-transport limit of a non-isentropic hydro-
dynamic model with momentum relaxation time 7 and energy relaxation time o. Inspired by the
Maxwell iteration, we construct a new approximation under the assumption 7o = 1, and show
that periodic initial-value problems of a certain scaled hydrodynamic model have unique smooth
solutions in a finite time interval independent of 7. Furthermore, it is also obtained that as 7
tends to zero, the smooth solutions converge to the smooth solutions of energy-transport models
at the rate of 72. The proof of these results is based on a continuation principle.

* Keywords: Hydrodynamic model; energy-transport limit; continuation principle.

AMS Subject Classification: 35B25, 35145, 35M20

1. Introduction

Accurate modeling of heat transport plays an important role in semiconductor sci-
ence with the fast development of miniaturization devices. Their behavior is heavily
affected by high-field phenomena (such as velocity overshoot effect, ballistic effect,
etc.), while the traditional drift-diffusion model does not provide an adequate
description of these effects. Consequently, several kinds of new macroscopic models
exhibiting them are introduced, such as hydrodynamic models, energy-transport
models and MEP models. With appropriate closure conditions, these models can be
derived from the semiclassical Boltzmann equation coupled with a Poisson equation
for the electric potential by a moment method or by a Hilbert expansion, see Refs. 3
and 19 for more explanation.

This paper gives the asymptotic relation between non-isentropic hydrodynamic
models and energy-transport models. Denote by n = n(t.z),u(t.z) and T(t.z) the
electron density, electron velocity and electron temperature, respectively. ® = ®(¢, )

937
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represents the electrostatic potential generated by the Coulomb force from the
electrons and background ions. After a re-scaling of time, these variables satisfy the
following non-isentropic hydrodynamic model for semiconductors

o + %div(nu) =0,

1. : 1 1 1
9;(nu) + —;dlv(nu ® u) +;V(nT) = TnV<I> — "y,

njul? nT L. nju|?  ynT
S, i i 41
8t< 5 +7_1>+lev[< 5 +’Y—1 u (1.1}
- B
= L v 0 T T
T TO 2 -1

| A® =n —b(z) for (t,z) € [0,+0c) x TY,

where T¢(d > 2) is the d-dimensional torus. The dimensionless parameters 7,0 are
the respective momentum relaxation-time and energy relaxation-time, here, we
assume 0 < 7 < 1,0 > 0 for simplicity. 77 (z) > 0 is a given lattice temperature of
semiconductor device, and b(x) > 0 stands for the density of fixed, positively charged
background ions (doping profile). Note that the scaling

t=7t
converts (1.1) back into the original non-isentropic model'” with ¢ as its time
variable.
To show our approach, we need to rewrite the momentum equation in (1.1) as
nu=rV® — 7V(nT) — rdiv(nu ® u) — 729,(nu),

=mmV® — 7V(nT) + O(73?). (1.2)
Set 7o = 1, and let us substitute the truncation nu = TnV® — 7V (nT') into the mass
equation and energy equation in (1.1) respectively, yields

( dn = A(nT) — div(nV®),
nT .|l :
at<7_ 1) + div [v_l(nvq — V(nT)) (1.3)
= [nV® — V(nT)|V® — L}TL) + O(7?).

Then, we immediately obtain the energy-transport model for semiconductors
(9yn = A(nT) — div(nV®),

o, (W"fr 1) + div [;’_Tl (nV® — V(nT))
n(T - Ty)

= [nV® -V (nT)|VP —
Y=

]

AD =n — b,
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which is a system of diffusion equations for the electron density and energy, and
maintains the parabolic—elliptic character.

Marcati and Natalini'® first established the relation between the isentropic
hydrodynamic models which the energy equation in (1.1) is replaced with a smooth
function of n(t,z) and drift-diffusion models rigorously, via the zero-relaxation-time
limit. Subsequently, this kind of limit problem has been investigated by various
authors for entropy weak solutions,”*"~*% and for smooth solutions.#%!%:21:23 T the
best of our knowledge, energy-transport limit of hydrodynamic models is hardly
studied. Up to now, only partial results are available. Under the assumptions that the
global weak entropy solutions exist, Gasser and Natalini’ studied the convergence
from the system (1.1) to (1.4) in the compensated compactness framework. Inde-
pendently, Y. Li'® investigated the same convergence for small smooth solutions by
virtue of the Aubin—Lions compactness lemma,”’ however, their results did not
indicate the definite rates of convergence.

The main aim of our paperis to justify the above Maxwell iteration procedure (1.2)—
(1.4) rigorously. This idea is from Yong in Ref. 23, where he proved the convergence
from isentropic hydrodynamic models to drift-diffusion models at the rate of 72.

Let (n,T,®) solves the energy-transport model (1.4), inspired by the Maxwell
iteration, we construct

n, = ntx),

u, =7V>o — Tm,
n (1.5)

T = T(t,:l)),

. =d=A"1Yn-0)
as an approximation for the solution (n7,u”,T7,®7) to thé system (1.1) with initial
data
(n7,u",T7)(0, ) = (n;,u,,T;)(0, ). (1.6)
Note that the initial data are well-prepared. Then, with the aid of the classical

hyperbolic energy method, we can prove the validity of the approximation (1.5) and
establish the following result. '

Theorem 1.1. Let s > 1+d/2 be an integer. Assume that T; = Ty (x), b= b(z)
satisfy conditions

‘ b(z), Ty (z) € H*1(T?) (1.7)
and the energy-transport equations (1.4) has a solution
(n,T) € C([0, T.], H***(T?)) nC ([0, T.], H**(T?))

with positive lower bounds. Then, for sufficiently small 7, the system (1.1) with periodic
initial data (1.6) has a unique solution (n™,u”,T7) satisfying (n™,u”,T7) € C([0, T,],
H*(T%)). Furthermore, there ezists a constant K > 0, independent of T but dependent
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on'T, € (0,00), such that

sup |[(n, —n",u, —u", T, —T7)|
t€[0,T.]

Hs(T?) < K’Tz. (18)

Remark 1.1. From (1.8) and Lemma 2.1 in the next section it simply follows that

sup ||[V®T - V&,|
t€[0,T,]

Hs(T4) = K”T?, (19)

where K’ > 0 is a constant independent of 7.

Remark 1.2. From (1.5) and (1.8)—(1.9) we can see that, for sufficiently small 7,
the exact smooth solution (n™,u”,T7, V®7) to the system (1.1) exhibits the following
asymptotic expression:

n"(t,z) = n(t,z) + O(72),
: ”

u’(t,z) = 7Ve(t,z) — T+T) + O(1?),

T7(t,z) = T(t,z) + O(r?),
V®7(t,z) = VO(t,z) + O(72?),

for (¢,z) € [0, T,] x T% Therefore, Theorem 1.1 characterizes the limiting behaviors
more precisely than previous results”'® where the convergence was proved but no
convergence rates were given. Moreover, no smallness condition on the initial data is
required by Theorem 1.1.

Remark 1.3. Theorem 1.1 only deals with the case where the initial data are well-
prepared. For more general periodic initial data, the initial layers will occur and
similar results of form (1.8)—(1.9) may still be verified -by using the matched
expansion methods, e.g. see Ref. 24. This will be shown in a forthcoming paper. On
the other hand, it is not difficult to see that our arguments and results hold true for
the bipolar non-isentropic hydrodynamic models.

The rest of the paper is arranged as follows. In Sec. 2, we rewrite the hydrodyn-
amic models as a symmetrizable hydrodynamic system and review some Moser-
type calculus inequalities in Sobolev space and a continuation principle.*** The
approximation solution (1.5) is discussed in Sec. 3 and Sec. 4 is devoted to the proof of
Theorem 1.1. In the Appendix, we present another drift-diffusion limit of the system
(1.1) derived from the Maxwell iteration, which is similar to the proof of Theorem 1.1.

Notations. Throughout this paper, Cis a generic positive constant independent of
7. H¥(T) (s > 0) is the usual Sobolev space on the d-dimensional unit torus T4 =
(0,1]¢ whose distribution derivatives of order <s are all in L2(T¢). We use the
notation [|U||, (||[U]|o := ||U]|) as the space norm. Finally, we denote by C([0,T], X)
(resp., C!([0,T], X)) the space of continuous (resp., continuously differentiable)
functions on [0, T] with values in a Banach space X.



