}

£k
iV

i

4

A
ﬁwﬁ.

LW
Rudt?

et

A
)
ordos
o
i

W

L.wmw

i

AT
S

i

.w%mi

awu«ﬁ,..i

Graags

g

]

|



IR

AA2011039800

WA B S E AR F b

2011039800



THESEHLRL T L BER B 201041 K K8 SCH 5%

ke < I L X VA 12051 i 3 H 11144 KRR ][5
I M| 043 fif Journal of Computer
80 Iéﬁﬁ %F 043 ) k2 ?i Ordinal-Class Core Vector Machine Science and 20105255541
? b IE2 K i D | Technology
T 5 % !
IR R e . .
81 | % & H b BT R4 |20104E30452 1)
o 043 2o inRzINee
i ; 043
A ®
£ 5 %[ o043 |[f -
1 #t R 043 o — -
82 ,Ir . 2 043 z - FrRUERL IR AL /}SI‘I’J A UE S B W i ) LR 201044735930
?7\' . 043 ;()
FE % 043 [#
o KR 043 [H I
83 |+ W o043 |& 2 24 BB O SR IHEHHE 201041814
Eglt &l 043 [# @
BNl 043 fisy N ———
84 ¢ K RI| 043 I il RCABEVZAIF I ! 5 4k ?‘E'LT;(:* A t; 2010
"IJ *E‘ 043 ?ﬁ( %).z B Lbﬂ’— I«K.X
B 2010 3rd
& 043 Lﬁm$ﬁ A Refined Distributed Parallel éntirnatlonal
85 [ | 043 | Ll Algorithm For The Eigenvalue an. ered“.ce 1"” 2010484314
X | 043 B Problem Of Large-scale Matrix | romediea
% Engineering and
Informatics
B gl 043 i A v 1y S S o s o L s o
86 |1 7 2& o | M| stem g soE | DTG (2010432590
BE % % 043 iyt
| 043 - #| MarkovZ AR R (AL 8 X 28 s 850305 i ke e
.\ ; IR LA 1
8 e m| o3 | ow T hRERTEr | AORLSEE
gk B fH] 043 I i
2010 3rd
il international
4 | 043 ) o R . .
88 |k s 043 L ?ﬁ A Long-running T]apsactlon Model of Lo?ferenpe on 20104843101
s i S B U Workf low Biomedical
X AE 043 . o .
i Engineering and
Informatics
Bl 043 fd TCLRAL 2% M 2% fi 5t 2] ) SR 3R g | DU K224 CTRERE e S
89 |1y s 043 L # Ik h) 20104424521
Eﬂ 2; gjg Lﬁﬂ$& An Improved Genetic Algorithm for
= I3 4 = . slec A9 =13
90 mE kel o3 | owi Wllelefs‘§igsoi.?etw01ks BIC-TA 2010 20104 145
4y e f 043 L i .ocalization
RE £ s |'M$ﬁ TI]':) T eIanaEt 1F olnfatlh
E % 043 *é i A Novel Encryption Algorithm Based C foré]ce i R
91 |ww  BI| 043 s on Attractor computation for e = 20104145
i BlE Bes - fuwi . Inspired Computing:
gk Bt e 043 - wireless sensor network Eitonont e gl
7 KB 043 . o
5 b Applications
P 2% 043 finl
% 043 I % PR 3K S0 1 I LAl s W 2 55 )4 S s o pans o 201049 J1 357
2 L ow| o3 | ow By % fig L BA i1
N i} 043 - A{m
20101EEE Fifth
- o L . international
g 043 |.ﬁm§i \(n?{ ITD}O\jd\ﬁf?ilﬁf ‘\z§i;}{hm ‘ sonterEis ok Bie-
g3 | | oaa |& | fpp ied in 3ne Froulem ol Cynamic inspored 201041450143
sk el 043 ¥ fd|Jam Resource Scheduling with Multi- Comput ing: Theories
| objective and Multi-constraint P B )

and Applications
Volume—1




043

fiit

gl o043 %{ ffjf
94 [ &l 043 L — AR T o AR AT AR LY 2010. 12
(NS 043 |
: ; I
X BBl 043 % T
{Dﬂ & 043 ”I] ﬂ N, 2NV,
95 |x 2 #| 043 |8 AN GRS WARRFZM CTF 01 0a028
Br x| 043 |3 i)
Bt R 043 y
96 ;a % 043 T’Eﬁ/h A Grey Prediction Approach to Energy Sources, Part | 20104:32%£16
% B 043 RO Forecasting Energy Demand in China A a4
fii 2010 Asia-Pacific
I W] ¥ 043 ) " O x
i e s EFsLLBRsEy | YOV Conterence on | g4,
BT W 043 2 Communication
Technology
International
fii . b :
Bkl 043 A Chinese text clustering algorithm (,o‘nfelenc'e o
98 ki A - # " . Services Science, 2010
R 18 W 043 . based k-means
% Management and
Engineering (Volume
|1z fi5| 043 fini e . P o
o9 ] 03 | M —eumanr s FHAEIR (2010620510
2 043 fii Trajectory Simplification and International
100 W 043 I: #| Classification for Moving Object Conference on 2010
s % with Road-Constraint Intelligent
] ; o[Bisimulations for Open Processes in In Proceeding of
101 & T 7
Ol (WFT| 3 I R Higher Order = Calculus TASE S
’ } ~| Refinement Checking for Interface In Proceeding of
102 |4 T Z
02 |# T 043 B B, Automata With Z Notation SEKE _2010. USA. 399- o
103 | 7 043 T Reducing lhgher.Order [.)1"(‘.alculus CORR abs/ 10112896 2010
to Spatial Logics
g . -| Temporal Logics and Model Checking In Proceeding of
104 & T~ :
04 | T 043 |8 B Algorithms for ZIA SEDM ——
¥ o 043 fil Process calculus with data In Proceeding of
105 gt 7 Si 043 I: #| structure and its model checking CCCM 2010
) % algorithm 2010. Yangzhou, China.
. E | . In Proceeding of
iy 2 Bl -
106 |& 17 043 7 Model Checking LOOP Programs SERP 2010. USA. 92-99 2010
o7 [FE B 4| 013 | 1 | RO TG T A RO R | AL AR R o
Zoh gl 043 [ # KL i
WA 043 A
108 |Z /N BE| 013 |BH %] M RURACEAE A0S i bR HHLRRE 2010437471
Wl 043 [ M
#%omsl o043 1LV B P S B SR W R R RS ol S 4 T A SRR e
cYnes HLARE 20104314541
109 % gl 043 L % % NI TR S 31454
AT | 043 il -
= > { l} i é/ > 593187 - RUARA - )
1o |z ms| oa3 |1- g HETRE W”&’Agem%““mg SRR R K240 | 20104E4245210)
VE | 043 |l
XU M| 043 flf Forward-Secure Blind Signature
111 |2 /> B 043 |- #| Schemes Based on the Variants of |China Communications| 20105:4%%
A i Al 043 |FRfd ElGamal
AL T 03 T i K I A B £ A e 20104231411
112 | % /N | 043 (R { e i ' AT AR 0]
B0 T O S O Y
x| 5 | 043 i 2010431310
113 % /> | 043 I | He PRI LA TR 21 M R | /N T DL R S Li:[ﬂ %
gk vk| 043 7 )
W F| 043 & »
L [ | oa3 |1 s ke DRSUMEU G B T LU R | HESEBLOEIT RIE M| o0
4 TPl 043 |# Wi R i
R X 043 o fwl
X B[ 043 ik .
o | % B 043 I | A BEmn 7 AR T i 480 v 2844 7 W 9010431 2560]
U5 o gl o043 | W KT Bl HF
4 fdf Bl 043 I




W ] 043 | W | HEMTAGEBAR GG AR | o o
116 | S s = PTG K e 4
Ilfr: # 9k 043 filj Uncertain Distance-Based Range Journal of Computer
117 Zp /N % 043 i- ?ﬁl Queries over Uncertain Moving Science and 20104255551t
;g f; 043 [ 1l Objects Technology
i . 043 filj
118 f;;JJ; il 043 b B b o S5 AR (K 45 RO T v B R |20104E47455 1
4% A% 043 #
X 043 filf
7% /N B 043 = - | )
: o B S AU I A T B I 2% 4 Ay g Ak .
vl on g e A MSE AT 2 2 P— —
A 043 = 1 R
2 B | 043 E 18
x| ZE 043 fi
Z% /N JBE| 043 Lo 35| b R A It ) 4% 2% ] S0 [ o o Ak '
120 = : fin TN < { 7 H S 1 s Ty | s Py
A f el 043 |1 fi
N R 043 i
i % 043 (| . ’
. UL T-CBESD:  — ARy Ak dik A 4k 1 B A e 4313
121 |8 & Z* 013 |# ﬁ%ﬁl{[{p}l&ﬁ ABAEBEAR | gm0 90 2 45 2010¢}£1#§11
g6 Wi 4| 043 # e
gk Bl 043 |3% i
o R 043 {ijt
I I S P | KR .
¢ 11 ~ . « 57 % ")\ KA L‘]}*LI‘ 2L e ‘:1:L\\ i e ", 4 S
o g ok HAHHLIR AR bt i SRR S
g6 N8 45| 043 #
gk I 043 |#Z
1 Multi-objective fuzzy clustering
Ji G FE 043 method for image segmentation Lecture Notes in
123 |6 ¢ o I . ; 4638
oA BK 043 ﬂﬁ based on variable-length Computer Science 20104638244}
7
intelligent optimization algorithm
2010 3rd IEEE
International
¥ & BE 043 filf A session identification algorithm Conference on
124 |5 20 7 ) - # based on frame page and Computer Science and| 2010.7.9-11
B R BK 043 = z
2 pagethreshold Information
Technology, ICCSIT
2010
Ji 6 JE 043 1 An improved algorithm for session Lecture Notes in :
125 11 - 0 o - s . . +6
ot ks BR 043 |- # identification on web log Computer Science 2010463183
X AR Y[ 043 i i — Second International
Mk BR 043 - % Verification of Privacy A
126 |a g 043 *,, il Requirements in Web Services "P 08 e E'*’ 2010
H, J {\ : x. i Composition LIRS
 H Al 043 - Al Commerce
| 043 i
o ki BR 7 : —FhP N4 T A AL AT SN S BT v i ety i || e
127 | r?{ 83; : ?; R JERT fm%‘.ﬁf%ﬁg{”j"?{”' HEHLIETE R e | 201044745330
= X
B 7 M 043 ¥ 1
sk B[ 043 _m N . 2019 I.nt‘ernational
198 |8 . B 043 |- #(| Parallel programming patterns with Conference on 2010
s '?‘_ 043 B granular computing Computer Application
e J ) 7 and System Modeling
PROCEEDINGS OF THE
il ’ . . . g FIFTH INTERNATIONAL
J4 e 043 _ A Service-Centric Solution for o T .l
129 R 043 | ﬂ%{ Kiceleas Sensar Retworks IS,ST LONI ERENCE ON |2010%=1V 111
% COMMUNICATION AND
NETWORKING
il X 043 i Rl S W E AL s R AR T 47 RN AR E
130 |86 4 Bk 043 L% LB EN }\-HHJK“;;I:A»&HK M | AWK fngwé% CHRFR 2010440423101
Wy 043 || O# :
=1 J
O T B O B e SR o 2010421411
e o % RO (1771 101
z




The 10th

o 4 043 An MDE Based Approach for 2
132 |95 .45 BR[| 043 Generating Software Architecture Inperustionl 201041145331
- i 043 Models from Formal Specifications Confere?ce -
Quality Software
sk H Bl 043 Model Checking probabilistic timed Journal of
133 | 2% 8 BRK| 043 automata in the presence of Computational 20104E64£ 71
BT g 043 uncertainties Information Systems
uk o | 043
o A5 BR[ 043
134 |7k W [ 043 SCREARAE al 475 VP A (R HE 4 A 0N FT HEPLEEE LR | 2011451521
B H| 043
X 4f 9] 043
. e . Making Architectural Decisions Symposia and
xR 043 5 | R - PSS | Wor
135 |8 &% 5% 043 asec Oﬁ egu11ewe§ts. nalysis and 01#sh9ps on 2010
M ik 043 Com?lnatlon.of Risk-Based and Ubiquitous,
Quality Attribute-Based Methods Autonomic _and
Lx = ﬁg 04? Towards a Formal Verification IEEE International
5‘1 nn }3}( 043 - -
136 2 it 043 Approach for Business Process Conference on Web 2010
= " 043 Coordination Services
X #E 043 S O AR (1 S i 2R 5 R0 e 48 v 20114314511
137 | d BR| 043 LRI ARSI | oot wp R 4 ;e
f/"TL X 043 7L /B
o X 043 — Pl S FFST AR A R TS | A B TR R e
138 | A2 BRl 043 R CHRELE R 201051 14531
= He| 043
130 |# [ 0a e g " i ‘
o e 5510 22 2 g P il 25 AR T T HEPLRR LR ER 2011
B Bl 043
ELEMENTARY INFINITY-THE THIRD TYPE | Proceedings of the
140 & F5 45 043 OF INFINITY BESIDES POTENTIAL 9th international 2010
INFINITY AND ACTUAL INFINITY FLINS conference
THE RELATION OF OPPOSITION BETWEEN | Proceedings of the
141 | 45 £ 043 POTENTTAL INFINITY AND ACTUAL 9th international 2010
INFINITY FLINS conference
A . . Proceedings of the
142 2Kk #5 B 043 fediun Loglc.and s Cr?ses ol 9th international 2010
Mathematic and Physics -
FLINS conference
International
- #A 043 ] Journal of Computer
143 |2 w043 Modeling Access Co?trol Reéource Science & Network |20104:10%3M
T B M 043 Based on Process Algebra Security, VOL. 10
No. 3, March 2010
2nd International
7 #4043 S ) o Conference on
144 |26 /B 043 A calculus with ]OS(%UCG usage and St Bginaaring 9010. 6
T BOM| 043 RLERL0S and Data Mining, SEDM

2010




1 B, Wang JD, Li T. Ordinal-class core vector machine. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
(4): 699-708 July 2010. DOI 10.1007/s11390-010-1054-y

)rdinal-Class Core Vector Machine

fin Gu® (il #%), Jian-Dong Wang! (T-##4<), and Tao Li? (% )

Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics
Nanging 210016, China

*College of Electronic and Information Engineering, Nanjing University of Information Science and Technology

_ Nanjing 210044, China

%—mail: jsgubin@163.com; aics@nuaa.edu.cn; lthnxx@126.com
Received April 5, 2009; revised January 18, 2010.

Abstract  Ordinal regression is one of the most important tasks of relation learning, and several techniques based on
support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to
handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core
Yector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine
{(OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space
: mplexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly
cludes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under
me situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective
functlon and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales
Il with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.

eywords support vector machine, ordinal regression, ranking learning, core vector machine, minimum enclosing ball

Introduction

(; In conventional machine learning and data mining
1 esearch, predictive learning has been a standard induc-
ve learning, where different sub-problem formulations
were identified, such as classification, metric regres-
sion, and ordinal regression. In the ordinal regression
oblems, the training samples are marked by a set of
anks, which exhibits an ordering among the different
categories. In contrast to metric regression problems,
ese ranks are of finite types and the metric distances
between the ranks are not defined; in contrast to clas-
ification problems, these ranks are also different from
e labels of multiple classes due to the existence of the
dering information*!. So to sum up, ordinal regres-
sion is a special task of predictive learning.

Although classification and metric regression prob-
ms have been thoroughly investigated in the liter-
atures, the ordinal regression problems have not re-
Eceived nearly as much attention yet. Nonetheless,
the applications of the ordinal regression frequently
occur in domains where human-generated data plays
an important role. Examples of these domains include

information retrieval(-3! | collaborative filtering!¥l, med-
ical sciencesl®, and forecasting alert level of flight
delays(®7]. Especially, we take forecasting alert level of
flight delays for example: according to the number of
the delayed flights, the extent of flight delays in an air-
port can be divided into five ordinal levels, such as “se-
vere”, “high”, “elevated”, “guarded” and “low”, which
arc also represented by five colors such as red, orange,
yellow, green and blue respectively. So the investigation
especially for ordinal regression will be very significant.

Ever since Vapnik’s influential work in statistical
learning theory!®, support vector machines (SVMs)
have gained profound interest because of good generali-
zation performance, there are also several approaches
based on SVMs proposed to tackle ordinal regression
problems. For example, Herbrich et al[?l applied the
principle of Structural Risk Minimization!® to ordinal
regression leading to a new distribution-independent
learning algorithm based on a loss function between
pairs of ranks. The main difficulty of the approach is
that the problem size of the formulation is a quadratic
function of the training data size. To overcome this
issue, Shashua and Levin!¥ generalized the support
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vector formulation for ordinal regression by finding ¢—1
separating hyperplanes which would separate the train-
ing data into g ordered classes. This was done by
modeling the ranks as the intervals on the real line.
But there still exists a problem with this approach,
which is that the ordinal inequalities on the thresholds
by < by < --- < bg—1 are not included in the formu-
lation, it might result in disordered thresholds at the
solution. This can be handled by introducing explicit
constraints in the problem formulation that enforce the
inequalities on the thresholds(!). According to this, Chu
and Keerthil!) proposed a new formulation which con-
siders the training samples from all the ranks to deter-
mine each threshold and gave the Sequential Minimal
Optimization (SMO) algorithm for finding the solution
of this formulation. Besides, Cardoso and Pinto da
Costal® also proposed a data replication method and
mapped it into support vector machines.

Although several approaches based on SVMs have
been proposed to tackle the ordinal regression prob-
lems, the scalability aspect of these approaches to han-
dle large datasets still needs much exploration. Re-
cently, by reformulating SVM’s quadratic program-
ming as a minimum enclosing ball (MEB) problem,
Tsang et al. applied an efficient (1 + €)-approximation
algorithm('%11 to obtain a close-to-optimal SVM so-
lution, which is the so-called core vector machine
(CVM)[12l, CVM was first proposed to tackle one-class
L2-SVM and two-class L2-SVM, which has an asymp-
totic time complexity that is linear with the number
of training samples and a space complexity that is even
independent of the number of training samples. Experi-
mental results also demonstrate that the CVM is as ac-
curate as other state-of-the-art SVM implementations,
but is much faster and can handle much larger datasets
than existing scale-up methods. Then, Asharaf et al.('3)
extended CVM to multiclass classification problem. Al-
though CVM is an effective method for handling large
dataset in practical application, it can only be used with
certain kernel functions and kernel methods. For exam-
ple, the very popular support vector regression cannot
be used with CVM. To overcome this problem, Tsang
et al. introduced the center-constrained MEB problem
and proposed the generalized CVM[*4, which can be
used with any linear/nonlinear kernel and more gen-
eral quadratic programming formulations('®l. Soon af-
terwards, in order to make CVM not require any nu-
merical solver, Tsang et al. proposed the simpler CVM
with enclosing balls!!®l, that is the so-called ball vec-
tor machine. Inspired by CVM and MEB, Shevade and
Chul"”) also presented the MEB formulations for sup-
port vector ordinal regression, but they still adopted
the SMO algorithm('8!, instead of using the CVM-like
algorithm to solve the resulting optimization problem.

J. Comput. Sci. & Technol., July 2010, Vol.25, No.

In this paper, we will extend the CVM algorith:
to the ordinal-class data and propose the Ordinal-Clas
Core Vector Machine (OCVM). As mentioned abowv:
its asymptotic time complexity is also linear with th
number of training samples, while its space complexit
is independent with the number of training samples.

The rest of this paper is organized as follows. Sectio
2 gives a short introduction to the MEB problem firs
The OCVM is presented in Section 3, which mainly ir
cludes two parts: formulation of ordinal-class CVM an
(1 + €)-approximation algorithm. Experimental result
are presented in Section 4, and the last section give
some concluding remarks.

2 Minimum Enclosing Ball Problem

Given a set of points S = {z1,...,x;}, where eac
x; € R%, the minimum enclosing ball of S (denote
as MEB(S)) is the smallest ball that contains all th
points in S('2l. As shown in Fig.1, when the poir
c* is the center of MEB(S) and the radius is R’
the minimum enclosing ball MEB(S) can also be de
noted as B(c*, R*). Let K be a kernel function wit
the associated feature map ¢ : € — ¢@(z). The
K(zi, x;) = (p(xi), p(x;)), where (-,-) denotes the ir
ner product in a high dimensional reproducing kern
Hilbert space (RKHS). Now the primal problem for th
minimum enclosing ball in the RKHS can be state
asl12:

min R?
c,R

st. |lo(x:) —c?< R?, i=1,...,1L (1

The corresponding dual is:

l l
min Z a0 K (i, ;) — Z a; K(zi, x;)
(o3
=1

4,j=1

l
st ) =1, @20, i=1,..,1 (¢
=1

where «; is the Lagrange multiplier.

Fig.1. MEB(S) = B(c*,R*). Given a set of points S, MEB(
is the minimum enclosing ball covering all the points of S w

the center ¢* and the radius R*.
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»w consider a situation where
K(z,z) =k 3)

1stant, and all the samples will be mapped on a
rsphere in the RKHS. This restriction will cover
kernel functions used in real-world applications,
xample:

the isotropic kernel K(z,y) = K(||lz — y||), and
saussian kernel is a special case of it;

the dot product kernel K (z,y) = K(zTy) (e.g.,
pomial kernel) with normalized inputs;

any normalized kernel K(z,y) =
K@y
C,.Z)+/K(Y,Y)

nder the restriction (3), the dual problem (2) can
written as:

i
rrgn Z a,-ajK(a:,-, :Ej)

$:7=1
l

s.t. Za,:l, @; 20, i=1,...,I. (4)
=1

» whenever the kernel K satisfies the restriction
my quadratic programming of the form (4) can be
ded as an MEB problem (1).

a* is the optimal solution of problem (4), the pri-
rariables ¢* and R* of B(c*, R*) can be recovered
fows:

l
¢’ = Z o; p(x:),
=1

l
R =,|6- ) ajojK(z;,z;). (5)

1,j=1

rdinal-Class Core Vector Machine

this section, we will first give the formulation of
VI, then present a (1+€)-approximation algorithm
'VM.

The Formulation of OCVM

dinal regression learning can be described as the
ing: given an i.i.d. sampleset S = {(z;,yi)}\; ~
and a mapping set H = {h(:) : X — Y}, a learn-
ocedure selects one mapping h! such that — using
lefined loss — the risk function is minimized(?.
s statement, the input space X C R9, the out-
space Y = {r1,...,7q}, which is ordered ranks
Tq—1 >y ... >y 71, the number of k-th category
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training samples is denoted as lx, and the total number
of training samples | = Y7 _, k.

As mentioned in the reduction framework of ordi-
nal regression(!%), the mapping function h consists of
g — 1 binary functions f(z,k) with k = 1,...,¢ — 1.
And if the mapping function f(x, k) satisfies the condi-
tion of rank-monotonic, i.e., f(x,1) > f(x,2) > --- >
f(x,q—1), we will have that h(z) = 1+ZZ;} [f(z, k) >
0]®. A simple rank-monotonic mapping function can
be achieved by ¢ — 1 parallel discrimination hyper-
planes in the RKHS, i.e., f(z, k) = (w, p(x)) + bi with
b1 > --- > bg_1, which will be adopted in our proposed
algorithm (see Fig.2).

1 f(X, 1)
Si'sS)
(5.5 1 {S5.50)
1 S, 3)
(5.5} | {Sa.Ss)
LX)
55 &

Fig.2. g — 1 parallel discrimination hyperplanes. Si denotes the
set of k-th category training samples, and the k-th discrimination
hyperplane is determined by s classes to its “left” and s classes
to its “right”. In this figure, ¢ =5, s = 2.

After defining the mapping set H, we need to find
a technique to minimize the risk function. Accord-
ing to the theory of generalization bounds of ordinal
regression!!9, we can bound the risk function by maxi-
mizing the minimum of the ¢ — 1 margins. Then the
primal problem of OCVM can be presented as follows:

q-—1
min  |w||® + sz —2p+
w,b, p,e,€e° =1
q—1 I k

29PN

k=1 i=1 j=in(k,s)
q—1 U su(k,s,q)

C3.2. 2. &My

k=1i=1 j=k+1
st. (w,p(x])) < b — p+€;7,

for j =in(k,s),...,k and i=1,...,1;;

(w, p(xd)) > bi +p— €,

for j=k+1,...,su(k,s,q) and

i=1,...,lj; (6)
where £k = 1,...,¢q — 1, s and C are user-defined

“he Boolean test [-] is 1 if the inner condition is true, and 0 otherwise.
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parameters. The k-th discrimination hyperplane is de-
termined by s classes to its “left” and s classes to its

right” with 1 < s < —1 (see Fig.2); the scalars sk -
and e 7 are relevant slack variables; p/||wl| is so-called
margin; two index functions in(k, s) and su(k, s,q) are
defined respectively as follows:

in(k, s)
su(k, s,q)

=max{l,k— s+ 1}
= min{q, k + s}.

By the definition of the primal problem (6), the or-
dinal regression is reduced to g — 1 binary classification
problems. And if an original sample (z,y) is included
in the k-th two-class training sample set, we will re-
define it as z = (x,t,k), where t = +1 if y > ¢, and
t = —1 otherwise. Thus, the original sample set S can
be converted to S = {zi= (23t d)(z'))}i,:l, where ¢(i)
means that z; is included in the ¢(7)-th two-class train-
ing sample set.

Next, for the sake of presenting the dual function in
a compact form, we will introduce the matrices Q, T
and A, which are all I’ x I":

1) Qil,iz = tilti'zK(m'il ) miz)'

2) Til,i-) = tiltiz if ¢(11) — ¢(i2), and Ti..iz = ()
otherwise.

3) Ajy = % if i, = 72, and A;, i, = 0 otherwise;
and let é =Q + T + A, then the corresponding dual
is:

min aTéa
[0 3
st. a20, 1l-a=1 (9)

where a is the corresponding Lagrange multipliers.
Rewrite (9) in the form of (4) as:

ll
min Z a,-ajK(z,-,zj)
a

i,7=1

st. Y ai=1, ;20, i=1...,0

i=1 (10)

where K(z,,zj) = K(:z:,,:z:J) + Ti; + A;j. Since

K(z,z) = kK, then K(z,2) = k+1+3 4f % satis-

fies the restriction (3), so the OCVM can be regarded

as an MEB problem, in which ¢ is replaced by the non-

linear map ¢ satisfying (p(z), #(z)) = K(z,2). It can

be easily verified that this ¢ maps the training point z;
to a higher dimensional space as:

1 T
@(Zi)=[ti¢(wi) t:i0p(:) ﬁei:‘ (11)

where 04(;) is a (¢ — 1)-dimensional vector with all ze-
roes except that the ¢(i)-th position is equal to 1, and
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e; is similarly the l’-dimensional vector with all zeroc
except that the i-th position is equal to 1.
If a* is the optimal solution of problem (10), then

v
w= Ztiag‘cp(mi), Zt aK(z;,x)
i=1

(1%
and the primal variables by and p can also be recovere
as:

w, p(x)) =

ll

by = — Z tial, p= Za:a;f((z,-,zj).
Vi ¢(i)=k ij=1
(1%
3.2 (1 + €)-Approximation Algorithm of

OCvM

Once the OCVM is formulated as an MEB prot
lem, we get a modified RKHS with an associated kern:
function K. This MEB problem in modified and RKH
can be solved using the (1+¢€)-approximation algorithi
(Algorithm 1) introduced by Badoiu and Clarkson['®
whose basic idea is to incrementally expand the core s¢
5 by including the sample that is the farthest from tk
center of the MEB(S,) until the (1 + €)-approximatic
of MEB(S,) covers all samples (see Fig.3).

=)

Fig.3. B(c, (1+¢)R). The inner circle B(c, R) is the MEB of t
set of squares and its (1 + €) expansion B(c, (1 + €)R) (the out

circle) covers all the points.

In Algorithm 1, the distance ||¢(2)—cx|| of a point
from the center ¢ of the MEB(Sk) in modified RKI
can be computed as follows

Z a,-ajl?(z,-,zj)—

zi, zjegk

3 iK(zi,2) + K(z,2)

z,€5% (]

#(2) — exll =

where ;s are the Lagrange multipliers of finding t
MEB(Sk) by (4).

According to the conclusion of [10], Algorithm 1 ¥
find a (1 + ¢)-approximation solution of the MEB
at most 2 iterations. In other words, the total nu
ber of iterations T is of O(%). And after finding
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)-approximation solution of the MEB, the primal
sles associated with the OCVM (i.e., weight w,
), slack errors € and €*) can be recovered from

[w b VCe VCe|"=e,. (15)

lgorithm 1. (1 + ¢)-Approximation Algorithm of

‘M

: Initialize the core set So = {&(20)}, the center ¢ =
@(2z0) and the radius Ry = 0.

: Terminate if no @(z) falls outside B(ck, (1 + €)Rx).

CDtherwise, find zx such that @(zx) is furthest away
from ck. Set Sk+1 = Sk U{@(zk)}

: Find the new MEB(Sk41) according to (4).

: Increment k by 1 and go back to step 2.

juppose that the time complexity for solving the
B(Sy) is of O(|Sk|?), then for a given constant € > 0,
time complexity of Algorithm 1 will be linear with
number of training samples. As only one sample is
led in the core set at each iteration, |Sx| = k + 1,
core set initialization takes O(1) time, the distance
aputations in step 2 take O((k + 1)% + (k + 1)l') =
¢2 + kl') = O(k? + kl) time, finding a new MEB in
p 3 takes O((k + 1)) = O(k®) time, and the other
rations take constant time. Hence, the k-th itera-
0 takes a total of O(kl + k®) time, the total time
ien by 7 iterations is

ZT:O(kl + B = O(2 + 7% = o(—l5 & i) (16)

4
€ €
k=1

ich is linear with [ for a fixed e.

Next, we consider the space complexity of Algo-
m 1. Suppose that the space complexity for solving
. MEB(Sy,) is of O(|Sk|?), then for a given constant
» 0, the space complexity will be independent with
: number of training samples. As the training sam-
s may be stored outside the core memory, the O(l’)
ice required will be ignored, hence the space com-
xity for the k-th iteration is of O(|Sk|?), the space
nplexity for the whole procedure is of O(;lg), which
ndependent of [ for a fixed e.

Experimental Results

Experiments are done with synthetic datasets and
1 world datasets, which demonstrate that OCVM
les well with the size of the dataset and can achieve
nparable generalization performance with existing
M implementations.

All experiments are performed on Pentium-4 ma-
nes having 1GB storage and running Windows XP.
e value of € is fixed at 1073 in all the experiments
ess otherwise specified.
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4.1 Synthetic Datasets

To show the fast convergence of OCVM, we con-
ducted the experiments using synthetic datasets. These
synthetic datasets have five ordinal scale and cach one
was obtained from 2 multivariate normal distributions.
The size of synthetic datasets ranges from 500 to 60 000.
All experiments are done with the Gaussian kernel
K(z,y) = exp(—”z—;ﬂyﬁ) with # = 1000, and with the
parameters C = 1000, s = 2. From Fig.4, we can sec
that the numbers of iterations of the OCVM converge
to 14, 7, 4 and 3 under the condition that ¢ = 0.05,
€ = 0.1, e = 0.2 and € = 0.3 respectively, which verifies
that OCVM will find an (1 + €)-approximation solution
in at most % iterations. Fig.5 shows a comparison of
training time for IMC(H),

0
=
2
K]
s
<
)
pad
L
-]
- g---8--==-0-gp--B0
Z 6 i
.-
P
s - SIETEEE [ ERCEETERen 0...0-0 00
................... T e
P S omim =¥ 50
10° o -

Size of Training Set

Fig.4. A plot of number of iterations for OCVM against the
training set size (in log scale) with synthetic dataset, where the

parameter s = 2.

104 ¢
—a— IMC(I1)
- m = EXC(I)
—e— IMC(R)
10°F -e@- EXC(R)
¢ OCVM
“ 0
L N
=] o L 7 R
e 10 o
=
U .....
10 A%
[
0 L )
e 10° 10* 10°

Size of Training Set

Fig.5. A comparison of training time (in seconds, in log scale)
for IMC(H), EXC(H), IMC(R), EXC(R) and OCVM against the
training set size (in log scale) with synthetic dataset, where the

parameter s = 2.
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EXC(H), IMC(R), EXC(R) and OCVM, where
EXC(H) and IMC(H) are the abbreviations of the two
SMO algorithms for the ordinal regression formulations
with explicit constraints and implicit constraints on the
thresholds®[!, EXC(R) and IMC(R) respectively rep-
resent the two approaches with explicit and implicit
constraints on the radiil'”). From the figure, we can see
that the time requirements of OCVM begin to exhibit a
constant scaling with the training set size after process-
ing around 4000 samples, and the increase of training
time of OCVM is comparatively less than the ones of
IMC(H), EXC(H), IMC(R) and EXC(R).

4.2 Real World Datasets

The OCVM algorithm is also evaluated on some real
world datasets (i.e., the benchmark datasets for regres-
sion and the one for information retrieval) to show that
it scales well with the size of the dataset and can achieve
comparable generalization performance with existing
SVM implementations.

In the experiments of comparing the generalization
performance, we have utilized two evaluation metrics,
which quantify the accuracy of predicted ordinal scales
{71,---,7n} with respect to true targets {ji,...,Jn}:

a) Mean absolute error: it is the average deviation of
the prediction from the true target, i.c., = >0, 17i—7il,
in which we treat the ordinal scales as consecutive in-
tegers;

b) Mean zero-one error: it is simply the fraction of

incorrect predictions, i.e., % L alk# j;]®.

4.2.1 Benchmark Datasets for Regression

Table 1 summarizes the characteristics of the bench-
mark datasets for regression used in our expcriments@,
in which we randomly partition the datasets into the
training set and test set, then select some as vali-
dation set. Originally, these datasets are used for
metric regression problems. In order to make them
used in ordinal regression problems, the target values
are discretized into ten ordinal quantities using equal-
frequency binning. The input vectors are normalized to
zero mean and unit variance, coordinate-wise.

For the kernels, since our focus is on nonlin-
ear kernels, we use the Gaussian kernel K(z,y) =
exp(—”L;‘;ﬂi), where 8 > 0, in all the experiments,
and a two-step grid search strategy with 5-fold cross
validation is used to determine the optimal values of
model parameters (the parameter 8 in the Gaussian
kernel, and the regularization factor C) involved in
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the problem formulations: the initial search is dc
on a 7 x 7 coarse grid linearly spaced in the regi
{(logyo C,log; B)| — 3 < log;oC < 3, =3 < logyo B
3}, followed by a fine search on a 9 x 9 uniform grid 1
early spaced by 0.2 in the (log,, C,log,, 8) space. T
validation set is specified in Table 1, and the test «
ror is obtained using the optimal model parameters 1
each formulation.

Table 1. Benchmark Datasets for Regression

Dataset No. No. No. No.
Attributes Training Validation Test

Set Set Set

Pyrimidines 27 50 20 2¢
MachineCPU 6 150 100 5¢
Boston 13 300 200 20¢
Abalone 8 1000 1000 317
Bank 32 3000 1500 519:
Computer Activity 21 4000 2000 419:
California 8 5000 2000 15 64C
Census 16 6 000 4000 16 784

In the experiments of comparing the generalizatic
performance and studying the fast convergence, we ra
domly partition each dataset into training/test spli
as specified in Table 1. The partitioning is repeated :
times independently. And then we compare the gene
alization capabilities and training time of our propost
approach OCVM with the ones of EXC(H), IMC(H
EXC(R) and IMC(R). The results are reported in T
bles 2, 3 and 4 respectively. From these three table
it is clear that our proposed approach scales well wi
the size of the dataset and achieves comparable ge
eralization performance as EXC(H), IMC(H), EXC(]
and IMC(R).

Table 2. A Comparison of Training Time for the Five Algo-
rithms Using a Gaussian Kernel (The parameter s of OCVM
is set to 3. The targets of these benchmark datasets are
discretized by 10 equal-frequency bins. The times are the
averages over 20 trials.)

CPU Time (s)
EXC(H) IMC(H) EXC(R) IMC(R) OCVM
Pyrimidines 0.06 0.12 0.03 0.10 0.10
MachineCPU  0.18 0.50 0.14 0.46 0.20

Training Set

Boston 0.32 0.70 0.39 0.82 0.57
Abalone 11.84 22.71 13.15 19.33 8.98
Bank 106.70 201.93 143.19 295.23 16.74 -
Computer 149.10 356.54 193.67 389.41 19.34
California 178.27 412.17 223.76 498.46 24.85
Census 256.76 498.17 321.56 732.12 26.66

@The source code of IMC and EXC can be found at http: //www.gatsby.ucl.ac.uk/~ chuwei/svor.htm.
©The Boolean test [-] is 1 if the inner condition is true, and O otherwise.
@ These regression datasets are available at http://www.liacc.up.pt/"~ ltorgo/ Regression/Datasets.html.




Bin Gu et al.: Ordinal-Class Core Vector Machine

705

.\ Table 3. Mean Zero-One Errors of the Five Algorithms Using a Gaussian Kernel (The parameter s of OCVM is set to 3. The
targets of these benchmark datasets are discretized by 10 equal-frequency bins. The results are the averages over 20 trials, along

with the standard deviation.)

Dataset EXC(H) IMC(H) EXC(R) IMC(R) OCVM

Pyrimidines 0.752 % 0.063 0.719 + 0.066 0.731 + 0.062 0.729 + 0.086 0.768 + 0.068
MachineCPU 0.661 + 0.056 0.655 + 0.045 0.672 + 0.046 0.658 + 0.047 0.673 + 0.054
Boston 0.569 + 0.025 0.561 + 0.026 0.575 + 0.027 0.564 + 0.025 0.568 + 0.026
Abalone 0.736 + 0.011 0.732 + 0.007 0.724 4 0.013 0.733 + 0.009 0.737 + 0.010
Bank 0.744 + 0.005 0.751 + 0.005 0.749 + 0.006 0.752 + 0.006 0.749 + 0.006
Computer 0.462 + 0.005 0.473 + 0.005 0.470 + 0.007 0.474 + 0.006 0.468 + 0.006
California 0.640 + 0.003 0.639 + 0.003 0.646 + 0.004 0.640 =+ 0.004 0.642 + 0.004
Census 0.699 =+ 0.002 0.705 + 0.002 0.702 + 0.003 0.706 + 0.003 0.703 % 0.002

Table 4. Mean Absolute Errors of the Five
of these benchmark datasets are discretized
the standard deviation.)

Algorithms Using a Gaussian K (The parameter s of OCVM is set to 3. The targets
by 10 equal-frequency bins. The results are the averages over 20 trials, along with

Dataset EXC(H) IMC(H) EXC(R) IMC(R) OCVM

Pyrimidines 1.331 £ 0.193 1.294 + 0.204 1.330 + 0.194 1.290 + 0.202 1.330 + 0.198
MachineCPU 0.986 + 0.127 0.990 +0.115 0.985 4 0.128 0.989 + 0.123 0.994 + 0.126
Boston 0.773 + 0.049 0.747 + 0.049 0.779 + 0.054 0.750 + 0.051 0.756 + 0.054
Abalone 1.391 + 0.021 1.361 4 0.013 1.401 + 0.022 1.3581 + 0.019 1.356 + 0.024
Bank 1.512 + 0.017 1.393 +0.011 1.511 4+ 0.018 1.342 +0.013 1.501 + 0.016
Computer 0.602 + 0.009 0.596 + 0.008 0.613 + 0.011 0.599 =+ 0.008 0.611 % 0.010
California 1.068 + 0.005 1.008 + 0.005 1.072 + 0.007 1.010 + 0.008 1.007 + 0.006
Census 1.270 + 0.007 1.205 + 0.007 1.268 + 0.009 1.215 + 0.008 1.283 + 0.008

4.2.2 Benchmark Dataset for Information Retrieval

Ranking learning arises frequently in information re-
trieval. Liu et al[29 built a benchmark dataset named
LETOR©, which consists of 69623 references and 9999
queries with their respective ranked results. The rele-
vance level of the references with respect to the given
textual query were assessed by human experts, using a
three rank scale: definitely, possibly, or not relevant.

Table 5. A Comparison of Training Time for the Five Al-
gorithms Using a Linear Kernel (The parameter s of OCVM
is set to 1. The times are the averages over 50 trials.)

No. Train- CPU Time (s)

ing Set  EXC(H) IMC(H) EXC(R) IMC(R) OCVM
5000 411 434 278 297 21

10000 711 803 689 792 33

15000 1118 1354 1056 1370 56

20000 1489 1693 1434 1596 75

. We randomly selected a subset from the whole
database (with size chosen from {5000, 10000, 15000,
20000}) for training and then tested on the remain-
_ing references. For each size, the random selec-
tion was repeated 50 times. The training time and
generalization performance of OCVM was compared

against EXC(H), IMC(H), EXC(R) and IMC(R). The
linear kernel K(z;,z;) = (zi, ;) was employed for all
the five algorithms (especially, OCVM use the normal-
ized linear kernel), the parameter s of OCVM is set
1. The training times are reported in Table 5, and the
results of generalization performance are presented as
boxplots in Fig.6. In this case, OCVM scales well with
the size of the dataset and achieves comparable gen-
eralization performance as EXC(H), IMC(H), EXC(R)
and IMC(R).

4 Conclusions

A scalable kernel method for ordinal regression,
namely Ordinal-Class Core Vector Machine, is proposed
in this paper. The proposed method can hurdle the
large sample problem for ordinal regression effectively,
because the theoretical analysis and experiments show
that the method scales well with the size of the dataset
and can achieve comparable generalization performance
with existing SVM implementations. At last, some
properties of OCVM are summarized as follows.

a) The method scales well with the size of the dataset
and has the comparable generalization performance
with existing SVM implementations;

®The dataset is available at http://research.microsoft.com/en-us/um/beijing/projects/letor/.
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‘Appendix

 In this appendix, we will give some analysis on
OCVM, which mainly includes two parts, the first one
(Propositions 1 and 2) shows that OCVM can guar-
tee that the biases are unique and properly ordered
der some situation; the second one (Proposition 3
d 4) shows the approximate convergence of the solu-
on from the viewpoints of objective function and KKT
;condmons
Lemma 1. Let p* be the margin of the optimal so-
tion of (6), if the matriz Q is positive definite, p* will
e unique.
. Proof.  According to the definition of convex
function(®!], if the matrix Q is positive definite, the
objective function of (9) will be strictly convex, then
there exists at most one optimal solution a*, which
means that the margin p* is also unique. O

Proposition 1. Let b* be the thresholds of the opti-
mal solution of (6), if the matriz Q is positive definite,
b* will be unique.

Proof. Firstly, take any one k for consideration, we
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define I;7“(b) = {i € {1,...,;}: (w,p(@])) = b> —p}
and I;P(b) = {i € {1,...,l;}: (w,p(x])) —b< p}. It
is easy to see that by is optimal iff it minimizes the
function:

k
ex®)= > 3 ((wp@l)—b+p)?+

j=in(k,s) ic I}"“’ (b)
su(k,s,q)
B4 D ) (—(w,e@) +b+p).

j=k+1 i€l}P(b) (A1)

According to the strict convexity(?!l of (A1) and the
unique of the margin p by Lemma 1, we have that by,
is unique. Then we can conclude that b* is unique. O

Proposition 2. If s = g— 1, the bias of the optimal
solution for the primal problem (6) will be ordered as
by <by<---<by_ .

Proof. Firstly, we define the function ex(b) as fol-
lows:

ex(b) =b* + Z > ((w,e() —b+p)*+

ji=in(k,s) 1([}"“"([))

su(k,s,q)

Pi X

J=k+1 Pi€lP(b)

—(w, p(z])) + b+ p).

Then, when s = g — 1, the derivative of ex(b) with
respect to b is

0. (0) = 222¢ )23 Y (el — b4 o)t

j=1 ,Lellnwu))

q
2 Y Y (—(w,p(@]) +b+p)+2b.
j=k+1ieI® (b)

Take any one k with 1 €< k¥ < ¢ — 1 for considera-
tion, and suppose by > by,,. Since by, is strictly
to the left of the bias bj that minimizes eg(b), we
have gi(bp,,) < 0. Since by, is a minimizer of
ex+1(b), we also have gx41(bjq) = 0. Thus we have
gk+1(bry1) — gk(bry 1) > 0, but by the formulation of

gk(b), we get
9k+1(bi+1) = gk(blt-H)
=-2 > ((w,e@*")) - b +0) -
ierloy (bis )

2 > (—(w,e@t) + b +p) <0
en? (bii)

so by < by, and similarly we can get by < b3 < -+

b;_;. This completes the proof.

amn
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Proposition 3. If Algorithm 1 terminates at the
T-th iteration, and suppose that the optimal objec-
tive for dual problem (10) is p*, we will have that
max {p—,’%, pﬁ:—"} < (1+¢€)2

Proof. If Algorithm 1 terminates at the 7-th itera-
tion, we will obtain an (1 + €)-approximation solution,
that is R, < RMEB(S,) < (1 + €)R,, namely,

(Br)* < (Rygp(s,))” < (L +€)R.)™ (A2)

Since the optimal objective for dual problem (10) is p*,
we can get (Rypp(s,))? = p* — & by the relationship
between (1) and (4), then take it into (A2), it is con-
verted to (R;)? < p* — & < ((1 + ¢)R;)?, Hence, we
have that
R? p'—k 2
max{p*—_k,R—g} < (1+¢€)°.
O
The Proposition 3 illuminates that the solution of
Algorithm 1 is (1 + €)?-approximation of the optimal
objective.
Proposition 4. If Algorithm 1 terminates at the
T-th iteration, for each training sample z, in S, we will
have that

to((wr, o(xe))+by(ey)—pr > — max { (e+§)k2, Au}.

Proof. Firstly, according to (5), (10) and (13), we
will have that
(12»,—)2 =K-— Pr- (AS)

Suppose that S’f is the support vector set of S,
Vz, € S\ S2, by (12) and (13), we will have that

ller — ZL’”2 = Z

Zzi),2i, €Sy

R(Zg, zp) — 2 Z af (titeK (xi, ze)+
z:€8,

T T T
o o ti b, K (i), i, )+

Ti,[ + Ai,l)
=pr + R — 2ts((wr, p(xe)) + by(e))-
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Further, Vz, € ((S\ §%) n B(e,, R,)), we will hav
that ||e, — ze||? < R,2, then by (A2) and (A3), we wil
have p, + & — 2te((w, p(xe)) + bge)) < & — pr, whicl
can be rewritten as

te((wr, p(xe)) + bye)) — pr 2 0.
And Vz, ¢ B(cr, R;), we have that
R% < |le; — ze|* < ((1 + €)R,)? (A5
then take (A2) and (A4) into (A5), it is converted to

R —pr <pr+ &= 2te((wr, p(xe)) + by(e))
<1 +e)*R~ pr) (A6,
and as R? < &, (A6) can be converted further as

2
€\
0> to((wr, p(xe)) + b¢(€)) —pr = —(6 - —2-)1\‘,2.

Next, Vzy € S5, by (12) and (13), we will have thaf

Z a{l a;rz til tizk(zil ) mig)"l’
zil,zazegf
I?(Ze, Zg) -2 Z a:(tith(:Bi, xg)-{—
z;€5,

ller — 2ol =

Tie+ Aiy)
=pr + & —2t,((w-, (p(fl)g)) + b¢(g)) - 2agA¢1g

similar with the analysis of the case Vz¢ € ((S\ S5)
B(cr, R;)), it is easy to show that

te((wr, o(xe)) +bg(e)) — pr 2 —plye 2 —Agpe.

So summarizing the three cases, Vz, € 5', we ce
conclude that to((w, p(xe)) +by(e)) — pr > — max{(e
e2\z2
D) )N ,Ag_g}.

The Proposition 4 illuminates that the solution
Algorithm 1 will satisfy the loose KKT conditions.
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3k 2 % L& 4 (chosen ciphertext attack 2,

HLTH - HE I\ RIS (2006AAT706103) ; [H 46T ST (C0720061360)
VEERA: (TR %1974 5 8 W L5 UFIE  E-mail : renyj100 @126. com.
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(195 4% ARAERBURL T 5 | S 63 09 75 UE R 9 PR Bl <1780 -

CCA2) M T 5 B N % (identity-based encryp-
tion, IBE) /7 & M B I T — 1 #r HIbr HEAE
BN ET S A UEE S B M IBA KE L FH 2L
PERY Canetti- Krawcezyk 8¢ (328 CK2005 #5i4))
FERXAGUE [ Iz 2t

1 B el

Krawczyk fif HH CK2001 A7 REEHRIL KCI
BRIt AT R & et 2O T CcK2001 A 2 A
CK2005 #EA1 VEE{#H iz A% BA KE Fril it
AL UER.

CKR2005 A EIE TS SEESG (P . P,
Py, BN S 5EBELMN—AT S HITH
—MEHLEFIRR A EATE. MREANTSH M7,
K BIEE ST JE AR AH R AR IR B I A — > T S L
M, FHFHENEHEBOHEERE M, EASHE
SUERAIEFEA B T —&EE XS
L AT T RE &0 . SRt — Bk s F
A EZ Rk 2 SUE A T R P A & A
Wit#& E# R FiH1T Send, Corrupt ,session-key ,
session-state ,session-expiration M Test HTF L
il FHXEERHTUETFMEENE. £
Test i TS VB — KA FEET » €
£0,1} RKIEA ) AR HEERA 0 B4 EIR M
FRISHISIESRSH &N R B&TEEHASE 0,
Y B —AHEE. « RS IET AR R
B MahE e s (HITGER b)) &
b’ = b, BBANIFRIGEE E AT T MR AR
4. 4z = |2Prb = 87 - 11,

X LRFEPHT. A — T EY R
P RN T B 4 - DA B AR AL Y
ZhnEMRMAILE £1& B2 ENIs R I 7R
B MR SIEEH; QX TEMEE LG E
E, Ac B2 AFRZ R — K2 E
R
2 T
2.1 IBAKE thillfiid

REWFAE — 1A £ B O (private key
generator , PKG) 57 M F7 4 L & 4 73 & 1S
L AN A fil B A2t BAKE Wik Ak
— A ER Y] PKGIEHUN A KL p AR
ARG LG, NEH e X6 26, G ERIE

BT f g LI 2.8,y €7, 1tH ¢ = &
w =el(g. @’ v =el(g. @ FF AFRBMIKEHFL
£ da, = (si1,si2,.di,di2) i €{A B}, Hep g,

¥ ¥ m

5z &2, din = g’_’d_L dia = g=™i .

IBAKE il 1 3 T BEH AL : RAEE 7 FAHH
A RFIEAT BB B, H | R L A FAEH A4 Ak
MrEtty Kiltz 36F Spmg e 7 £ e 2l &
A BB 3 B4 Ak g FRE AT
211 N

AFIBOHIBENGER ra Fl m(ra,m €2,) K
Ja 5 BIBRAT AN #Y N R AE .

DATHE. Cu =(g1g®)*.Cu =e(g. @™,
ta =TCR(Cai,Cr), Ka = (virw) s ; BEALIEEUSE
WAFLEH ya €2z, 3N va = 2 RBEW (A, C =
(Cui, Caz) , Ya) KiXE%E B.

@BIUE. G = (21g™)®, G =el(g, 27",
8 =TCR(Gu,Gn) . Ks = (vt v)®  FEHLIEHUE
e €2,,it5 va = /7 AFKB. G = (G,
Gn) , Ys) RIE4 A.

2.1.2 fif%E
A F1 B BWENEE G 75 H 8 QI FAEH L
TR RRAE.

DA BWE 6 JFitE. 8 = TCR(G, Gn) ,
Ko =e(Gn,dP, dr2) CB* 2,

@B #WZ c. JFITE. ta = TCR(Cai, Ca2) |
Kan =e(Cai, dhi ds) CiBa 2,

213 HE

A FIB 511838 k6 Al ko FETWFITE.

D A B KL B: K« = Excti(Kn).
Ko =Excti( Ks), Kas = Excti(Ys’).

AZHWME: s =Alla lva IBla lvs,
Ka = Expdx, (s) @ Expd« (s) @ Expd«y, (s), XA
THBRES s F1 ka Z M HEIGEHEE.

@B MHER & = Excts( Ks) , Kn =
Excte( Ka) , Kea = Excti(Ya's).

BEHMM s = Allc lva IBllG lvs,
Ks =Expds, (s @ Expd«, (s) © Expdxy, (s) . XA
IHBRER s f1 ke Z MU HEIRIEE.

Hr TCR &M A A 51 (target collision resist-
ant) , Excts () : K >U B (m, o - BEHLIE B
8 {Exdp( )} xcu, 40,1} = U & T hBIHLEA
HiE? | FEFEEN A sessionstate 2] H1



