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PREFACE

This is a substantial expansion of the first edition. The last chapter
on stochastic differential equations is entirely new, as is the longish section
§9.4 on the Cameron-Martin-Girsanov formula. Illustrative examples in
Chapter 10 include the warhorses attached to the names of L. S. Ornstein,
Uhlenbeck and Bessel, but also a novelty named after Black and Scholes.
The Feynman-Kac-Schrodinger development (§6.4) and the material on re-
flected Brownian motions (§8.5) have been updated. Needless to say, there
are scattered over the text minor improvements and corrections to the first

edition. A Russian translation of the latter, without changes, appeared in
1987. '

Stochastic integration has grown in both theoretical and applicable
importance in the last decade, to the extent that this new tool is now
sometimes employed without heed to its rigorous requirements. This is no
more surprising than the way mathematical analysis was used historically.
We hope this modest introduction to the theory and application of this
new field may serve as a text at the beginning graduate level, much as
certain standard texts in analysis do for the deterministic counterpart. No
monograph is worthy of the name of a true textbook without exercises. We
have compiled a collection of these, culled from our experiences in teaching
such a course at Stanford University and the University of California at San
Diego, respectively. We should like to hear from readers who can supply
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more and better exercises.

A word about the exposition. We have consistently chosen clarity over
brevity. As one of the authors suggested elsewhere, readers who insist on
concision are free to skip every other line or so. But be warned that most
errors in mathematics are concealed under the surreptitious cover of terse-
ness, whereas a fuller exposure leaves less to pitfalls. A good example of our
preference is afforded by the demonstration in §10.3 of the Markov prop-
erty for the family of solutions of a stochastic differential equation, which
is often glossed over in texts and ergo gloated over by innocent readers.
Actually, the point at issue there is subtle enough to merit the inculcation.

For the new material, the following acknowledgements are in order.
Michael Sharpe provided helpful comments on several points in Chapter 2.
Giorgio Letta inspired an extension of predictable integrability in Chapter
3. Martin Barlow supplied two examples in Chapter 3. Daniel Revuz
and Marc Yor permitted the references to their forthcoming book. Darrell
Duffie gave lectures on the Black-Scholes model in Chung’s class during
1986 which led to its inclusion in §10.5. We wish also to thank those
colleagues and students who contributed comments and corrections to the
first edition. Lisa Taylor helped with the proof reading of this edition.
Kathleen Flynn typed the manuscipt of the first edition in TEX, whilst
artists at Stanford Word Graphics, especially Walter Terluin, added final
touches to the figures. We are appreciative of the interest and cooperation
of the staff at Birkhauser Boston. Indeed, the viability of this new edition
was only an optional, not a predictable event when we prepared its precursor

in 1983.

March 1990 K. L. Chung
R. J. Williams



PREFACE
TO THE FIRST EDITION

The contents of this monograph approximate the lectures I gave in a
graduate course at Stanford University in the first half of 1981. But the
material has been thoroughly reorganized and rewritten. The purpose is to
present a modern version of the theory of stochastic integration, compris-
ing but going beyond the classical theory, yet stopping short of the latest
discontinuous (and to some distracting) ramifications. Roundly speaking,
integration with respect to a local martingale with continuous paths is the
primary object of study here. We have decided to include some results
requiring only right continuity of paths, in order to illustrate the general
methodology. But it is possible for the reader to skip these extensions with-
out feeling lost in a wilderness of generalities. Basic probability theory in-
clusive of martingales is reviewed in Chapter 1. A suitably prepared reader
should begin with Chapter 2 and consult Chapter 1 only when needed. Oc-
casionally theorems are stated without proof but the treatment is aimed
at self-containment modulo the inevitable prerequisites. With considerable
regret I have decided to omit a discussion of stochastic differential equa-
tions. Instead, some other applications of the stochastic calculus are given;
in particular Brownian local time is treated in detail to fill an unapparent
gap in the literature. The applications to storage theory discussed in Sec-
tion 8.4 are based on lectures given by J. Michael Harrison in my class. The
material in Section 8.5 is Ruth Williams’s work, which has now culminated
in her dissertation [77].
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At the start of my original lectures, I made use of Métivier’s lecture
notes [59] for their ready access. Later on I also made use of unpublished
notes on continuous stochastic integrals by Michael J. Sharpe, and on local
time by John B. Walsh. To these authors we wish to record our indebted-
ness. Some oversights in the references have been painstakingly corrected

here. We hope any oversight committed in this book will receive similar
treatment.

A methodical style, due mainly to Ruth Williams, is evident here. It
1s not always easy to strike a balance between utter precision and rela-
tive readability, and the final text represents a compromise of sorts. As a
good author once told me, one cannot really hope to achieve consistency in
writing a mathematical book—even a small book like this one.

December 1982 K. L. Chung
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