中国震例

EARTHQUAKE CASES IN CHINA

 $(2003 \sim 2006)$

名誉主编 车 时

主 编 蒋海昆

副 主 编 付 虹 杨马陵 马宏生

地震出版社

中国 震例 EARTHQUAKE CASES IN CHINA

 $(2003 \sim 2006)$

名誉主编 车 时主 编 蒋海昆副 主 编 付 虹 杨马陵 马宏生

地震出版社

图书在版编目 (CIP) 数据

中国震例. 2003~2006/蒋海昆主编. 一北京: 地震出版社, 2014.5 ISBN 978-7-5028-4395-3

I. ①中··· Ⅲ. ①蒋··· Ⅲ. ①地震报告—中国—2003~2006 Ⅳ. ①P316. 2 中国版本图书馆 CIP 数据核字 (2014) 第 024176 号

邮编: 100081

传真: 88421706

传真: 68467991

传真: 68455221

地震版 XM2394

中国震例 (2003~2006)

名誉主编:车 时

主 编: 蒋海昆

副 主 编: 付 虹 杨马陵 马宏生

责任编辑:王 伟

责任校对:庞亚萍 凌 樱

出版发行: 地 震 出 版 社

北京民族学院南路9号

发行部: 68423031 68467993

门市部: 68467991

总编室: 68462709 68423029

专业图书事业部: 68721991

E-mail: 68721991@ sina. com

http://www.dzpress.com.cn

经销:全国各地新华书店

印刷:北京地大天成印务有限公司

版(印)次:2014年5月第一版 2014年5月第一次印刷

开本: 787×1092 1/16

字数: 1280 千字

印张: 50

印数: 1000

书号: ISBN 978-7-5028-4395-3/P (5085)

定价: 200.00元

版权所有 翻印必究

(图书出现印装问题,本社负责调换)

编辑组成员

名誉主编 车 时

主 编 蒋海昆

副主编 付 虹 杨马陵 马宏生

秘书王博张勇

内容提要

《中国震例》系列丛书是研究地震和探索地震预测预报问题的重要科学资料。1988、1990、1999、2000、2002、2003 和 2008 年陆续出版了《中国震例》 $1\sim9$ 册,合计收录 1966~2002 年间发生的 240 次地震共 210 篇震例研究报告。本册(第 10 册)共收录 2003~2006 年间发生的 33 次 $M_{\rm s} \geq 5.0$ 级、1 次 4.9 级、以及补充编写的 2002 年 1 次 4.7 级地震的震例研究共 26 篇。每个报告大体包括摘要、前言、测震台网及地震基本参数、地震地质背景、烈度分布及震害、地震序列、震源机制解和地震主破裂面、观测台网及前兆异常、前兆异常特征分析、应急响应和抗震设防工作、总结与讨论等基本内容。本书是以地震前兆异常为主的、规范化的震例研究成果,文字简明、图表清晰,便于查询、对比和分析研究。

本书可供地震预测预报、地球物理、地球化学、地质、工程地震等领域的科技人员、地震灾害管理专家学者、大专院校师生及关心地震灾害的读者使用和参考。

Synopsis

The multi-volume series book of "Earthquake Cases in China" contains important scientific data and information for seismological studies and researches on earthquake prediction and/or forecast. Volumes I to IX of this multi-volume series book were published in 1988, 1990, 1999, 2000, 2002, 2003 and 2008 with 210 case study reports on 240 earthquakes occurred from 1966 to 2002. This volume (Volume X) includes study reports on cases of 33 earthquakes of $M_s \ge 5.0$ and 1 earthquake with $M_s 4.9$ occurred from 2003 to 2006, as well as 1 supplementary study report on an earthquake with M4.7 occurred in 2002. In general, each case report includes abstract, introduction, seismic network and basic parameters of an earthquake, seismogeological background, seismic intensity distribution and earthquake damages, earthquake sequence, focal mechanism solutions and main fault plane, monitoring network and precursory anomalies, analyses on characteristics of precursory anomalies, measures of emergency response and earthquake protection, summary and discussions. This book is a collection of basic analyses and results of systematic and standardized studies on earthquake cases based mainly on the earthquake precursory anomalies. Simple and concise illustrations and distinct figures and tables are convenient for readers to get references, to make comparisons and analyses.

The book can be used and referred to by scientific and technical workers of earthquake prediction and forecast, geophysics, geochemistry, geology, engineering seismology, by earthquake disaster managers, by university and/or college teachers and students and by readers who are interested in seismic hazard reduction.

编写说明

中国地震预测预报实践自1966年邢台地震开始,已走过近50年的历程,取得了显著的进展。地震预测预报是以观测为基础的科学,短临预测预报作为地震预测预报的主要目标,实现它的重要环节是获取可靠的地震前兆异常,综合分析多方面的资料,进而进行地震发生时间、地点和震级三要素的预测预报。因此,全面积累每次地震的地震地质、震害、地震参数、地震序列,尤其是地震前兆异常及预测预报和应急响应的经验教训等资料,对于地震科学研究、地震预测预报和防震减灾具有特别重要的科学价值。经过研究整理的一次或一组地震的上述系统资料,本书中称之为震例研究报告,它们是地震预测预报及其研究的基础。

1966 年以来我国大陆发生了众多的 5 级以上地震,其中的许多地震已有不少论文和专著,但由于没有统一的规范和要求,有关资料不便进行系统的综合分析对比。为了系统地研究地震前兆和推进地震预测预报工作,国家地震局(现中国地震局,以下同)于 1986~1987 年安排了我国大陆 1966~1985 年 5 级以上地震的研究项目,作为该研究的成果,《中国震例》1~3 册于1988 年和 1990 年出版,含 58 篇震例研究报告,系统地研究总结了 60 次地震。1992 年起国家地震局安排了 1986~1991 年第二批震例的研究及震例编写,共完成 56 篇震例研究报告,包括 60 次地震震例,于 1999 年和 2000 年出版了《中国震例》第 4 和第 5 册。在国家科技部社会公益性项目资助和中国地震局的联合支持下,2000~2002 年完成了 1992~1999 年中国大陆灾害性地震震例总结研究,并在 2002 年和 2003 年出版了《中国震例》第 6~8 册。第 9 册《中国震例》于 2008 年出版,共收录 2000~2002 年发生的 23 次 $M_{\rm S} \ge 5.0$ 级和 1 次 $M_{\rm S}$ 4.7 地震的 21 篇震例研究报告,同时给出了以前出版的《中国震例》 1992~1999 年 3 册中的青海震源机制的校正结果。本册(第 10 册)共收录 2003~2006 年间发生的 33 次 $M_{\rm S} \ge 5.0$ 级、1 次 4.9 级地震、以及补充编写的 2002 年 1 次 4.7 级地震的震例研究报告共 26 篇。

《中国震例》的震例研究和报告编写工作基本按《震例总结规范》进行,以研究报告集的形式按地震发生日期顺序编辑成册。各总结研究报告按以下基本章节内容进行编写:

一、摘要

概述报告的主要内容。

二、前言

给出主震或重要地震的基本参数、震害、预测预报、宏观考察和研究历史等情况的概述。

三、测震台网和地震基本参数

给出地震前震中附近测震台网情况,以及主震或重要地震的基本参数。对同一地震,当 不同单位给出不同参数时,则分别列出,编写人认为最合理的参数放在第一条。

四、地震地质背景

简要介绍震中附近地区的区域大地构造位置、深部构造条件、区域形变场概貌、历史地 震活动及主要构造与断裂的活动习性,以及与发震构造有关的其他资料。

五、烈度分布与震害

给出烈度分布图、宏观震中的地理位置。简要介绍等震线范围、重要地表破坏现象、烈 度分布特征及震害评估结果。

六、地震序列

尽可能给出全序列资料(包括直接前震和余震的有关参数)、余震震中分布图、地震序列类型、应变释放曲线或能量衰减曲线图、序列b值、频度衰减系数及较大余震目录等。

七、震源机制解和地震主破裂面

分别给出震源机制解图和表。对同一地震,如有不同的解,则分别列出,编写人认为最合理的解列在表中第一条。综合分析地震主破裂面与发震构造的关系。

八、观测台网及前兆异常

介绍地震前的定点前兆观测台网及其他有关观测情况。规定 $M_s \ge 7.0$ 级地震距震中500km以上, $6.0 \le M_s < 7.0$ 级地震距震中300km, $5.0 \le M_s < 6.0$ 级地震距震中200km,作为定点观测台网前兆观测资料的统计范围,给出此范围内测震台(项目)以外的其他地震前兆定点观测台站(点)或观测项目分布图,并在必要时给出前兆异常项目平面分布图。认为与此次地震孕育过程有关的全部前兆异常,包括非定点台网观测到的异常和上述规定距离以外的重要异常,均列入前兆异常登记表,并给出前兆异常图件。概述前兆异常的总体情况,以图表为主,必要时加以简要文字说明。对地震学项目以外所有定点观测台站(点)的所有观测项目或异常项目进行累加统计时,其统计学单位称为台项。对前兆异常登记表中的异常项目进行累加统计时其统计单位称为项次或条。

为保证资料的可靠性,要求所用数据的观测质量必须符合观测规范,且能够区别正常动态与异常变化。根据地震前兆观测资料清理和分析研究的结果把观测资料质量划分为三类: 1 类——符合上述要求; 2 类——基本符合; 3 类——不符合。规定只选用 1、2 类观测资料,3 类资料不予使用,亦不进入统计。异常判定应经过全部资料和全过程的分析,经排除干扰和年变等因素后,根据一定的判据,认定与地震关系密切的变化才列入异常登记表。

规定按时间发展进程把异常分为 L、A、B、C 四个阶段类别:L——长期趋势背景异常,出现在地震前 5 年以上;A——中期趋势背景异常,出现在震前 $0.5 \sim 5$ 年;B——为短期趋势异常,震前延续 $1 \sim 6$ 个月;C——临震异常,震前 1 个月内。另外,对远离规定的震中距范围以外,或据现有认识水平一时无法解释,以及非常规观测的、值得研究的其他可靠和较可靠的异常现象划为 D类,在相应的异常阶段类别前冠以 D 字样,以留下资料和记录供后续研究。对各类异常,按照其可信程度,又区别为 1 、11 、111 三个等级,以下角标标示: 1 ——可靠; 11 ——较可靠; 11 ——参考,留作记录。D 类异常只取 1 和 11 两类。如:C 11 为较可靠的临震异常;DA 1 为可靠的中期 D 类异常。关于 1 、11 、111 等级的确定,主要尊重研究报告作者的意见,编辑过程中仅作了个别调整,供读者参考。宏观异常在登记表中总的作为一项异常。异常登记表中各栏目,既是报告作者对异常研究的结果,亦是为了给读者提供使用、研究和参考的方便。对异常进行以上的认真审核和分类处理,既可达到去粗取者提供使用、研究和参考的方便。对异常进行以上的认真审核和分类处理,既可达到去粗取

精、去伪存真的目的,又可避免丢失可能有科学价值的异常记录,以利于进一步研究和资料积累。尽管如此,书中辑入的异常未必都恰当,读者可根据提供的资料和文献进一步做出判断。

全书对异常登记表中使用的观测手段和异常项目名称及图件中的常用图例作了统一规定(见异常项目名称一览表和常用图例)。

九、前兆异常特征分析

简要给出对主要异常特征的综合分析与讨论,给出要点,提出有依据的看法和待研究的问题。

十、应急响应和抗震设防工作

简要介绍(记录)预测预报、应急响应和抗震设防等方面的重要情况和工作过程,包括对强余震的监测、预测情况等。

十一、总结与讨论

从科学上讨论有技术和工作特色的经验、学术观点、教训、问题及启示。

十二、参考文献和资料

给出在震例研究和报告编写工作中研究过的主要文献和资料目录。报告中直接引用已出版文献或未出版的参考资料、图件和工作结果时均注明来源,以便读者进行核对或追踪研究。

在本系列书中,对于已发表有专著的强震,根据专著发表后的研究成果,亦按以上要求 编写震例研究报告,并进行必要的资料补充,专著中发表过的异常图件一般从略,文字 从简。

本书辑入的震例研究报告是前人和作者对该次震例资料整理和研究成果的集中表达,是以地震前兆异常为主的、规范化的震例科研成果。《中国震例》编辑组工作的指导思想是:经过科学整理和分析研究,给出各次地震的基本资料,既可供读者使用、参考,又可供进一步追踪研究;既具有资料性,又要反映目前研究程度;文字力求简明,避免冗长的叙述和讨论,因此尽量使用图表,便于对比。由于资料和研究程度的差异,各报告在坚持质量和科学性的前提下,根据实际情况编写和编辑,因此篇幅和章节编排不尽一致。

中国大陆地震前兆的观测与预测预报实践表明,地震孕育和发生是一个极其复杂的过程,影响因素很多,伴随这一过程有许多异常现象。我们把那些地震前出现的、与该地震孕育和发生相关联的现象称之为地震前兆,即采用了广义地震前兆的概念。本书辑录的地震前兆异常,是经过审核的、有别于正常变化背景的、可能与该地震孕育和发生相关联的异常变化,其中既可能有区域构造应力场增强引起的异常("构造前兆异常"),又可能有来自震源的信息("震源前兆异常"),具有不同的前兆指示意义,无疑包含着丰富的可能的前兆信息。因而震例研究报告是地震前兆研究和预测预报探索的宝贵财富,它既是进一步研究的基础资料,又可供在今后震情判定中借鉴。

震例研究报告是震后经过若干年的资料收集、发掘、整理和总结研究之后编写的,从震后总结到实现震前的科学预测预报,还要经过一段艰难的路程。结合汶川地震科学总结,根据地震形势的发展及科学认识的深入,本册在严格遵循《震例总结规范》的基础上,力图在以下方面有所加强:

- (1)强调震例的史料及档案性质。要求前述第八部分在对地震学及前兆异常进行系统梳理(震后总结)的前提下,着重震前预测主要科学依据、所得结论的叙述,着重当时论证过程实事求是的还原,包括不同观点的碰撞。要求尽可能提供震前预测及震后趋势判定全面的原始证据,包括预测依据及预报凭据。对有一定预测实效的震例,更要加强预测过程、预测依据的详细辑录,详细收集当时开展科学预测的原始凭据。
- (2) 进一步强化震例总结的科学性。前述第九部分除已有内容的客观表达外,要求作者站在目前的角度,以当前的科学眼光,重点对当时预测过程的得失成败进行科学评述及原因分析。
- (3) 为突出地震预测预报这一震例研究工作的重点,并保证资料的权威性,对前述第 五部分"烈度分布与震害"和第十部分"应急响应和抗震设防工作"适当简化,对应急、 震害等数据直接引用相关正式资料并列出参考文献即可。

本书所辑入的震例研究报告,基于"属地为主"的原则由发生地震所在的省(自治区、直辖市)地震局负责总结研究。各报告对前人或相关的研究工作成果,特别是地震前兆研究的成果,虽尽力作了反映,但由于人员变动和资料收集的困难,以及水平限制等原因,难免仍会有疏漏,对个别异常和资料的处理亦可能会有不妥之处。

中国地震台网中心为震例工作的负责单位,承担震例研究及报告编写工作的安排、审阅、修改等工作。震例总结指导专家组由蒋海昆、刘杰、杨马陵、付虹、陈棋福、周龙泉组成。本册《中国震例》由蒋海昆、付虹、杨马陵、马宏生编辑完成,王博、张勇承担了大量事务性的工作。书中文字及图件由地震出版社王伟、庞亚萍进行了统一编辑加工和校对。《中国震例》(2003~2006)编辑组仍遵循此前制订的2~3人分别把关评审与主编审定的工作程序,确保每份报告都经历了初稿、修改稿(1次或多次)与承担单位的验收等过程。编辑组在严格遵守作者"文责自负"的前提下,在不违背原则的情况下对每份报告的体例和分析结果等进行了适当的编辑处理。编辑组虽然作了很大努力,但由于水平和条件所限,书中可能还有不周或不足之处,望予谅解并提出宝贵意见。

监测预报司预报管理处刘桂萍处长(现任中国地震台网中心副主任)对震例研究及震例编写有较深入的思考,自始至终关注并参与该项工作,编者对此表示衷心的感谢!

编 者 2013年10月 北京

About This Book

In China, practices in earthquake precursor observations and earthquake prediction and/or forecast have been carried out for more than 45 years since the Xingtai earthquake in 1966 and substantial progress has been achieved. Earthquake prediction and forecast is a science that based mainly on observations. The short term and imminent prediction or forecast of the time, magnitude and place of an earthquake is the principal goal of earthquake prediction or forecast. Successful forecast or prediction can only be achieved on the basis of acquisition of reliable data of earthquake precursory anomalies and comprehensive analyses of all data. Therefore, for earthquake research, prediction, protection and hazard mitigation, it is of particularly important scientific value to accumulate extensive data of seismogeology, earthquake disasters, earthquake parameters, earthquake sequence and especially earthquake precursor anomalies and lessons of prediction and emergency response of an earthquake. The above mentioned systematic data of an earthquake or a group of earthquake obtained through researches and classification are treated as research reports of earthquake cases in this book. They are the foundation data for earthquake prediction or forecast and related researches.

Many earthquakes of $M_s \ge 5.0$ occurred in China mainland since 1966. Numerous papers and/ or works related to many of them have been published and/or carried out. But due to lack of unified standards and requirements, many relevant data could not be analyzed and compared systematically and comprehensively. In order to carry out comprehensive studies on earthquake precursor anomalies and to promote earthquake prediction research, during 1986-1987 the State Seismological Bureau (named China Earthquake Administration now) launched a project for researches on earthquakes with $M_{\rm S} \ge 5.0$ occurred in China mainland during 1966-1985. As a result, the first three volumes of "Earthquake Cases in China" were published in 1988 and 1990, containing 58 earthquake case reports of systematic studies on 60 earthquakes. Since 1992 the State Seismological Bureau had initiated the researches of the second phase on earthquake cases. Many researches were carried out and 56 research reports on 60 earthquake cases were written and published in Volume IV and V in 1999 and 2000 respectively. With financial support for public affairs from the Ministry of Science and Technology and with support from the China Earthquake Administration, summarizations of earthquake cases occurred during 1992-1999 in China mainland were continued from 2000 to 2002, and published Volume VI, VII and VIII in 2002 and 2003. The Volume IX had been published in 2008, which includes 21 research reports on 23 earthquakes with $M_s \ge 5.0$ and 1 earthquake with $M_s 4.7$ occurred from 2000 to 2002. And the revised focal mechanism solutions for the Qinghai earthquake cases from 1992 to 1999 in published Volume VI, VII and VIII of "Earthquake Cases in China" were given. This volume (X) includes 26 research reports on 33 earthquakes with $M_{\rm S} \geqslant 5.0$ and 1

earthquake with M_8 4.9 occurred from 2003 to 2006, as well as 1 supplementary study report on an earthquake with M4.7 occurred in 2002.

The book is compiled in the form of collection of reports on earthquake cases and arranged according to occurrence dates of the earthquakes. All reports of earthquake cases were written with the reference standards and requirements of "Specification for Earthquake Case Summarization". Each report contains the following basic components:

Abstract is a summary of the major contents.

Introduction gives a brief description of the occurrence time of the main shock or main earthquakes, its or their damages, the status of prediction or forecast, the macroscopic investigations and the history of earthquake studies, etc.

Seismic Network and Basic Parameters of the Earthquake gives the distribution of seismic network near the epicenter before the event (s) and the basic parameters of the main shock or main earthquakes. When the different parameters of an earthquake were given by different agencies, they are listed separately, but the first one on the list is the parameter that the authors deem most reasonable.

Seismogeological Background gives a brief description of the location of the regional geotectonic structures, deep structures, general picture of the regional deformation field, historical earthquake activity, activities of main structures and faults and other data associated with the seismogenic structures around the hypocenter.

Distribution of Seismic Intensity and Damages illustrates the distribution of seismic intensity, the geographic location of the macroseimic epicenter. The range of isoseismal lines and significant phenomena of surface destruction are described, the features of intensity distribution and the estimated earthquake damages are outlined.

Earthquake Sequence provides the whole sequence (including the relevant parameters of all direct foreshocks and aftershocks), the distribution of aftershock epicenters, the type of the sequence, the strain release curve or the energy attenuation curve, b value of the sequence, the frequency attenuation coefficient and the catalogue of major aftershocks.

Focal Mechanism Solution and Main Rupture Plane gives figures and tables of the focal mechanism solutions. When there are different solutions, they are given separately, with the most appropriate one is listed as the first one by the authors. Comprehensive analyses are made on the relation between the earthquake rupture plane and the seismogenic structure.

Monitoring Network and Precursory Anomalies describes the precursor monitoring network and other related observations. Statistical analyses are made on the precursory anomalies obtained from the networks within or more than the distance of 500km from the epicenters of the $M_{\rm S} \ge 7.0$ earthquakes, within 300km from the epicenters of earthquakes of $6.0 \le M_{\rm S} < 7.0$, and within 200km from the epicenters of the earthquakes of $5.0 \le M_{\rm S} < 6.0$. Maps of fixed observation stations (points) or observation items (except seismic observation items) within such distances and maps of distribution of precursory anomalies (only indicating precursory items of fixed observations except

seismic anomalies) are also provided. All anomalies that are assumed to be closely linked with the process of the earthquake preparation, including the important anomalies at non-fixed observation points and outside the defined distances, are listed in the summary table of precursory anomalies with corresponding figures. The overall situation of the precursory anomalies is outlined, mainly with figures and tables and with concise illustrations if necessary. The statistic unit of observation items or anomaly items of all stations (points) is called station-item.

In order to ensure the reliability of the data, the observation quality of the data must meet the observation specifications and the normal variations and anomalous changes can be distinguished. According to the result of the sorting out and analyses of the precursor observations, the quality of the observation data are classified into three classes: Type 1 — the data meet the above mentioned quality requirements; Type 2 — the data meet the quality standards in general and the normal variations and anomalies can be distinguished; Type 3 — the data don't meet the requirements. It is decided that only the first two types of data can be used, while the data of the third type will not be selected for statistical analyses. The anomalies are identified on the basis of result of analyses on all data during the whole process after eliminating contaminations, annual variations and other contamination factors. Thereafter, only anomalies identified to be closely associated with earthquakes are listed in the summary table of precursory anomalies.

The anomalies are divided into four classes L, A, B and C according to the time development of the anomalies. Class L indicates the long-term trend anomalies that appear five years or more before the earthquake; Class A is the mid-term trend anomalies which occur about six months to five years before the earthquake; Class B denotes the short-term anomalies which last for about one to six months before the earthquake; Class C means the imminent anomalies that occur within approximately one month before the impending earthquake. In addition, Class D is introduced to include certain reliable or fairly reliable anomalies that deserve further studies. They might appear at observation stations that are even further away from the epicenter than the defined distance, they could not be explained with present knowledge, or they are not obtained by conventional observations. The anomalies are further classified according to their reliabilities into degrees ${
m I}$, ${
m II}$ and ${
m III}$, with ${
m I}$ reliable; II — fairly reliable and III — for reference. But the anomalies of Class D are only classified in degrees I and II. The reliability degree is marked by subscript to the bottom right of the class symbols. For example, C_{\parallel} is a fairly reliable imminent anomaly; DA $_{\parallel}$ is a reliable mid-term anomaly of Class D. They are usually determined by the opinions of the authors, except a few are revised by the editors for reader's reference. The macroscopic anomalies registered in the summary table of precursory anomalies are regarded as one item of anomalies. Various items of anomalies registered in the table are the research results obtained by many authors and are provided to the readers to utilize, study and refer to with convenience. The stringent evaluation and classification of the anomalies not only serves the purpose of selecting the high quality data, but also helps to avoid the possibility of losing any scientifically valuable records of anomalies that are useful in further scientific analyses. However, the anomalies included in the book are not necessarily correct for all of them

and readers should make further judgment based on the data and references provided.

The names of the observation items (precursory items) and legend in the figures are unified in the following pages.

Analyses of Features of Precursory Anomalies gives comprehensive analyses and discussions on features of the main anomalies with interpretation based on facts and opinions on problems for future study.

Measures of Emergency Response and Earthquake Prevention gives brief introduction on important situations and procedures of the work in earthquake forecast or prediction, emergency response and earthquake prevention, including the monitoring of strong aftershocks and so on.

Discussions and Concluding Remarks explores scientifically the experience, academic ideas, lessons, problems and revelations that are characteristic in technology and practical work.

References and Information lists all major references and data catalogues which have been studied during the case study and report compilation. The origins of published and unpublished data, figures and results, which are directly quoted in the reports, were given also.

Some strong earthquakes that have been studied in published monographs are also compiled with earthquake case reports, with necessary data supplemented. However, the published figures of anomalies are usually deleted and illustrations are simplified.

Each of the earthquake case reports contained in this book is the manifestation of the achievement gained by the predecessors and authors in sorting out and studying the earthquake case. They are the fruit of a systematic and standardized scientific research on earthquake cases with emphasis on precursor anomalies. The Editorial Board of Earthquake Cases in China has been working under the guide line that this book will provide readers for their use, reference and future research with basic data of each earthquake obtained through scientific sorting out and analyses. Therefore, all reports are designed to have abundant information and clearly indicate the current research level. The literal illustrations are as simple as possible without lengthy descriptions and discussions, so available figures and tables are given for comparison. Each report is compiled and written to the highest possible quality and scientific soundness. However, owing to differences in data and research extent and the actual situations, the length and format for all reports are not exactly the same.

The earthquake precursor observations and forecast or prediction practices in China mainland have shown that the preparation and occurrence of an earthquake is a rather complicated process influenced by many factors and accompanied by various anomalous phenomena. We call the anomalies appeared before an earthquake that are closely linked with the process of the preparation and occurrence of the earthquake and distinct from the normal background of variations as earthquake precursor anomalies, or as precursor anomalies in general sense. The earthquake precursory anomalies included in the book are examined to be relevant phenomena associated possibly with the process of earthquake preparation and occurrence. Among them, there may be anomalies caused by intensification of regional tectonic stress field (referred to as "tectonic precursor anomalies") and the information from a single earthquake focus (called as "focal precursor anomalies"). They have different

precursory implications, undoubtedly with possible and rich precursory information. Therefore, the earthquake case reports are the valuable accumulations for studies on earthquake precursors and forecast or prediction. They provide not only basic data for further investigations, but also contribute references for future assessment of the development of earthquake activity.

However, it should be noted that those earthquake case reports have been compiled through several years of collection, analysis and exploration, and summarizing of the data after the earthquakes, and there is still a long and arduous way from the post-earthquake summarization to scientific earthquake prediction or forecast. It also should be pointed out that besides following the "Specification for Earthquake Case Summarization" strictly, some new demands have been proposed for this volume:

- 1. Emphasizing the historical and dossier properties of the earthquake cases. Following the systemic study on the seismogeological and precursory anomalies, a scientific and real description on evidences and conclusions are needed, especially for decision-making process before the main-shock. The original proofs for earthquake forecast or judgment of aftershock tendency are asked to be provided.
- 2. Emphasizing the scientific properties of the earthquake cases. In "Analyses of Features of Precursory Anomalies", besides something mentioned above, the authors also have been asked to comment on the successful or unsuccessful earthquake prediction, on the side of present scientific point of view. The analysis on reasons of successful or unsuccessful earthquake prediction are the key points of this part.
- 3. For projecting the earthquake forecast or prediction, which is the emphasis of the "Earthquake Case in China", as well as to ensure the reliability of the book, two parts mentioned above, "Distribution of Seismic Intensity and Damages" and "Measures of Emergency Response and Earthquake Prevention", should be simplified felicitously. It is feasible that the correlative data could be quoted directly and references be listed.

The research reports of earthquake cases collected in this book were mainly prepared by Earthquake Administrations of the provinces, autonomous regions and metropolitan cities according to the principle of the earthquake location. All efforts were made to ensure that the reports reflect the achievement of researches obtained by the predecessors or in related researches and particularly the achievement of researches on precursors to earthquakes. However, due to personnel changes and limited data accessibility, there might be inappropriate omissions or improper processing of individual anomalies and data.

China Earthquake Networks Center (CENC) is the department with responsibility for the research reports of earthquake cases. Jiang Haikun, Liu Jie, Yang Maling, Fu Hong, Chen Qifu, Zhou Longquan are members of guidance group for compilation of "Earthquake Cases in China". The editorial work of this volume was completed by Jiang Haikun, Fu Hong, Yang Maling and Ma Hongsheng. Jiang Haikun is the chief editor. Fu Hong, Yang Maling and Ma Hongsheng are the associate editors. Wang Bo and Zhang Yong are secretaries with responsibility for lots of businesslike

jobs. All texts and figures in the book were edited by Wang Wei and Pang Yaping from the Seismological Press. The editorial board of "Earthquake Cases in China" (from 2003 to 2006) followed the strict working procedure of previous volumes. 2 or 3 editors were in charge of appraising the reports and the chief editor was in charge of final approving of the reports. For every report, there had to be a manuscript, a revised manuscript (revised once or several times) and the manuscript had to be examined and accepted by the institution that participated the project. Under the prerequisite that "the author is responsible for his own report or paper", the editorial board made some appropriate editing of the format and the results of analyses without violation of the principles. Though great efforts were made by the editorial board, there still might be some improper aspects in the book due to our limited scientific knowledge and work conditions. Therefore, any comments and corrections are greatly appreciated.

The Editorial Board
October 2013, Beijing

地震前兆异常项目名称一览表

学 科	异 常 项 目 名 称
地震学	地震条带,地震空区(段),空区参数 $\sigma_{\rm H}$,地震活动分布(时间、空间、强度),前兆震群,震群活动,有震面积数 A 值,地震活动性指标(综合指标 A 值,地震活动熵 $Q^{\rm t}$ 、 $Q^{\rm N}$ 、 $Q^{\rm N}$ 、 $Q^{\rm N}$ 、地震活动度 γ 、 S (模糊地震活动度 Sy)),地震强度因子 $M_{\rm f}$ 值,震级容量维 $D_{\rm o}$ 值,地震节律,应变释放,能量释放,地震频度, b 值, h 值,地震窗,缺震,诱发前震,前震活动,震情指数 $A(b)$ 值,地震空间集中度 C 值, η 值, D 值;地震时间间隔,小震综合断层面解, P 波初动符号矛盾比,地震应力降 τ ,环境应力值 $\tau_{\rm o}$,介质因子 Q 值,波速,波速比, S 波偏振,地震尾波(持续时间比 $\tau_{\rm H}/\tau_{\rm V}$ 、衰减系数 a 、衰减速率 p),振幅比,地脉动,地震波形;断层面总面积 $\Sigma(t)$,小震调制比,地震非均匀度 GL 值,算法复杂性 $C(n)$ 、 AC
地形变	定点水准(短水准),流动水准;定点基线(短基线),流动基线;测距; 地倾斜;断层蠕变;GPS
应力-应变	钻孔应变(体积应变,分量应变),压容应变,电感应力,伸缩应变
重 力	定点重力, 流动重力
地 电	视(地)电阻率 $ ho_{ m s}$; 自然电位 $V_{ m SP}$; 地电场
地 磁	Z变化,幅差,日变低点位移,日变畸变;总场(总强度),流动地磁;磁偏角;感应磁效应(地磁转换函数);电磁扰动(电磁波)
地下流体	氡(水、气、土),总硬度,水电导,气体总量,pH 值, CO_2 、 H_2 、痕量 H_2 、 He 、 N_2 、 O_2 、 Ar 、 H_2S 、 CH_4 、 Hg (水、气)、 SiO_2 、 Ca^{2+} 、 Mg^{2+} 、 SO_4^{2-} 、 HCO_3^{-} 、 Cl^{-} 、 F^- 含量;地下水位,井水位;水(泉)流量,水温
气 象	气温,气压;干旱,旱涝
其他微观动态	油气井动态; 地温; 长波辐射 (OLR)
宏观动态	宏观现象
综 合	前兆信息熵 (H); 异常项数