BTTEES



VR

CHN I 5= M
B 5

AT DEFHIE TR covevorvverervronerncrernmierieieiiiir e e s e, W. Muschik
%%@J%ﬂﬁﬁiﬂ&%gﬂﬁéﬁﬁ—'ﬁﬁ‘% ................................... %]E]g E%%
B SEHEIETE FRHG Y wvooeroresoreranmesisrareravaassonsasanes BRY kRN BEE ML
X HEBEMGNEN A6 A KR NaY 570l 45 4 1 38 3

................................................... fHE BEY HEd KR IHX
Gauss 45 7if A S HL T2 [ H035 7 Monto Carlo J7 ] --vvne wEt Wi
il e N QR GO h A R LT R T T T T PP T e
YT B IR TG G BB Fu LR i +oveeeevvenrnnrerennesnessaneesssensessssasnansensens ® 3
P04 BUSRACT BE A R AT 40 AR 7 TR L e KR BN EA
A NI SE— dB R G- covrersscrsoreenrassrassrmnseces svaesnesevessenns sensovasyrorsn %k
S ARE S H T R A 2 (A B R 2 eemerrrerrrmreraemronsecienesannians KEE
3 F MoCormiok BHAHKSHETTEGHL --vvvevvrenrormcmermromerersniemiiiiiiiiseenien. %A
R S T BB SRS T oevereressosrrnrranieisonissneesssssssnnnensens HE¥ puk
[l 4 A4 1 5 B S B SR 17 P2 ) B G 75 i T weoveemeenne HKIL AR IX®

ot £ & it

AT B2 400 S BRI A AR BRI vvvveenmenenecnnoe ik PRA
RS BrR— IR AR HE S B 28 BB B LT coveerereemnmssnee et e EER

(189)
(201)
(207)

(213)
(219)
(226)
(231)
(237)
(242)
(250)
(258)
(264)
(270)

(276)
(280)



JOURNAL OF APPLIED SCIENCES

Vol. 4, No. 3, July, 1986

CONTENTS

Thermodynamical Theories Survey and Comparison «eecesceseerieeies B R TR W. Muschik
Low Altitude Performance of Doppler Navigation Radar Analysis and Calculation

........ BT T T R T R TTXTTTTELT R 1)) Kuoting [,Vang Yingj-zm
Single=Beam Photoacoustic Spectrometer System

............................................. Qiu Shuye  Zhang Shuyi Hu Chunnian Wei Lanhua
Studying the Structure of NaY Zeolite with Varying Dehydration Level Using X-Ray

Powder Diffraction ---Yu Yinliang Zheng Peiju Xu Zisheng Chen Mingqin Wang Boyi
The Drawing Method of the Trajectories of Incident Electrons with Gauss Distribution in

Solids by Monte Carlo Simulation:- - eesseseeesisssnieninreenennnnane. He Yancai Cao Liqun
Effect of Phonon Dispersion CN EXCItON sesevscescsrecscsncosiosississnssarecsssssassssocsonce Gu Shiwet
Projection Type Moire Topography and Its Applications ««veeeereeivaveininnas Zhang Fubao
Methods and Results of Measuring Surface Heat Loss of Steam Pipes with IR Thermometer

......................................................... Zhang Caigen Wang Hongxi Wu Yinshen
A Further Study on Multiplexed Sequences:--«-s-ss-eererrrrimiamieeniniiaineiiiiaan, Chen Lidong
On the Relationship between the Eigenvalues of Tridiagonal Matrix and of Its Submatrices

...................................................................................................... Mu Dingyi
On McCormick Idealized Exact Penalty Function: -« oeeeererceeeiaaienannes Zhang Liansheng
Analysis of Stability in Direct Current Motor Operation ««---+--- Zhang Changbo Xu Baozhi
Study on Solid—State Catalysts and Gaseous Products of Redox Reaction by Photoacoustic

Spectroscopyeseereerareeseeranetenacicaacaes Ming Changjiang Liu Y aotian W ang Wenmyun

RESEARCH NOTES

Computing Resonant Frequencies of Cylmdl ical Dielectric Resonators with Finite-Difference
Molbhosssessssssnscssinsesnvaennsinsissbbomnssenessass sonssssss sarsssosassrassassnsye Li Yin Luo Sifen
A Mathmatioal Model of the Curved Parameter for General Standard Pipesin the Shiping
Pipe System:« e seeeseessssaniminsisnssnseiieiiinsinens cerreeesnsnnnesnsssennnnnnnes Li Zhiliang

(189)
(206)
(212)
(218)
(225)
(230)
(236)

(241)
(249)

(257)
(263)
(269)

(275)

(279)

(282)



w4k $314 NOB B % % W Vol. 4, No. 3
1986 427 A JOURNAL OF APPLIED SCIENCES July, 1986

Thermodynamical Theories Survey

and Comparison

W. MuscHIK
(Technische Universitaet Berlin, West—Germany)

Each survey of a field is based on a subjective choice and valuation of the
subject which can not be undertaken without any arbitrariness. Beyond that a mosb
detailed representation of all numerous thermodynamics theories should not be
given here in favour of getting an easier structure. Therefore some representative
facts of thermodynamical theories should be disoussed vicariously for all that can
not be mentioned here without achieving completeness, e. g. variational principles
of thermodynamios are not discussed “+2:*%, Starting out with some well known
facts, we will deal with disciplines chosen as representatives in the order of their
historical development:

Thermostatios

Linear irreversible thermodynamios
Non-Clagsical thermodynamios
Theories with evolution oriteria.

In the field of heat theories of maocroscopic systems we distinguish between
totally different proceedings which are supplementing each other: phenomenologiocal
and statistical theories (Fig. 1). The first ones do not take into consideration the
molecular structure of materials whereas statistical theories embrace this structure
by miocroscopical models using master equations or representative ensembles™.

Here we restrioct ourselves on discussing exclusively phenomenological non-
equilibrium thermodynamics. The basic concept of phenomenological theories is
that of the macroscopic variable. These quantities are parameters of the state of the
gystem which can be retraced immediately or mediately to measuring quantities of
the system. Examples are volume, pressure, temperature, mass density, charge
density, magnetization, pressure tensor, internal energy eto.

In the following we will shortly motivate why there exist a lot of similiar
thermodynamical theories which are in principle different in their interpretations.
The transition from mechanics to thermostatics is achieved by adding thermody-
namical quantities to the mechanical ones. Begides other quantities especially
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Theories of macroscopic systems taking into account their agitation by heat

taking into account their molecular structure

without with

phenomenological theories statistical theories

non-equilibrium thermodynamics kinetics [statistical physics
master representative

macroscopic variables .
equations | ensembles

thermo- [classical [rational |non-classi-| evolution || transport|equili- | non-

statics  |irrever- |thermody- |cal criteria theories | brium | equi-
sible namics thermody— libri-
thermody- namics um
namics

Fig. 1 Scheme representing the relationship between

phenomenological theories and statistical ones

small
state space
large

temperature entrop
P By derived quantity

o . local in time
dissipation inequality L
global in time

universal

{ primitive concept
relation q<—>¢{

material dependent

Fig. 2 Catagories for classifying phenomenological thermodynamical theories

temperature and entropy are added. Because both these quantities are defined by
measuring rules in equilibrium, the transition from mechanics to thermostatios has
no problematio nature. Because temperature and entropy are to be used also in
non-equilibrium, the question arises how to define them in non-equilibrium. This
question can be answered differently in principle,and therefore no natural extension
of thermostatios to thermodynamics exists’. Either temperature and entropy will
be redefined for non-equilibrium or they are taken for primitive concepts, i.e. their
mathematical existence is presupposed and first of all a physical verification remains
open (Fig. 2).

Besides the problem of introducing temperature and entropy in non-equilibrium
other possibilities of generalisation appear by transposing thermostatics into
thermodynamics. So the used state spaces may be based on different definitions of
state, the dissipation inequality may be local or global in time, and the relation
between heat flux density @ and entropy flux density ¢ may be universal or
dependent on material (Fig. 2).
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1. State Space

The phenomenological desoription of systems needs state spaces z which are at
least Hausdorff spaces because of the physical measuring instruments. Trajectories
in such a gtate space

P: [i, flcR'—>Z(s)C2z tERWZ (L) Er (1-1)
are representing processes which the system undergoes. There now exist two kinds
of state spaces which are called large and small ones and in which material
properties M are represented differently:

Definition: A state space z is called large, if material properties M are defined
by maps being local in time

M: 2—>M Hausdorflian, Z (¢)>M (t), for all ¢. (1-2)
A large state space contains by definition so many variables so that all material
properties at time ¢ are determined by the state variable Z(¢) at the same time
t. Such “comfortable” state spaces are existing for thermoelastic material *’ or
in thermostatics'™. In general, however, not all variables are known which span
large state spaces, and therefore material properties become dependent on the
history of state variables.

Definition: For a fixed time ¢, real s=>0, and with

Z'(s): =Z(t—s), t—s€ i, f1, Z'(s) Tz, Z'(+) €2'(+), (1-3)
is called higtory of the proocess Z(+) up to time ¢.

Therefore the history of a proocess is defined ag that part of a process trajectory
which is coming from pagt reaching up to time .

Definition: A state space is called small, if material properties M are defined
by maps on process histories which therefore are not local in time

M: 28 («) >, Z'(«)>M (¢), for all ¢. (14
Therefore by definition all state spaces are small for materials showing after—effects.

2. Second Law

Further differences between thermodynamical theories arise by the formulation
of the Second Law. Because there is no natural extension of the equilibrium entropy
to non-equilibrium ™, it was said that there are as many formulations of the
Second Law as there are authors™. Despite of such manifold of formulations they
can all be divided into in time local ones and into in time global ones. Here the
global formulations are related to path integrals along process trajectories. Because

the usual verbal formulation of the Second Law (there are no Kelvin processes) is
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also global in time, it was preferred to formulations being local in time (the entropy
production density is not negative). It is unjustified to do so because we know an

existenoce theorem for non-negative in time local entropy productions ®37.

3. Relation between Entropy and Heat Flux Density

The field of the entropy flux density ¢ appears in the balance of entropy. For
systems of one component it depends on the heat flux density g homogeneously and
locally

$(®, ) = A(-)q(, ). (8-1)
Thermodynamical theories are now distinguished by the coldness™® being universal
or dependent on material properties.

4. Thermostatics

For repetition we put together the facts of thermostatios: The state space of
thermostatios is axiomatically fixed by the Zeroth Law. For thermal homogeneous
systems it includes (Fig. 3)

—the work variables @
—the mole numbers 7, and
-an additional thermal variable, the internal energy U or the
thermostatioal temperature 7'
Here T is defined by a division of equilibrium systems into classes of equivalence by
thermal equilibrium™!. As 7 the entropy S is also no primitive conocept in
thermostatics. Its differential is defined by Gibb’s fundamental equation

T d8: =dU — A+da— p-dn (4-1)
(pm=chemioal potentials). Using the First Law™*

Zeroth Law: state space (a, n, *) =(-) €Z
a=work variables, W =A4-4

n=mole numbers, *=U or T

Thermostatic temperature 7'
thermostatic equilibrium gererates a division into classes
of equivalence defining T

Thermostatic entropy St Clausius’ inequality:
§ 1=Q/T+s-7e ;G(Q/T) 4579t <0

State functions:
H{), F(+), G(), 8(+)

Fig. 3 Thermostatics (W = power, A=generalized forces)
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dU =DQ~+ DW +h-dn* (4-2)
(DQ=heat exchange, #=molar enthalpies, dn°=external rate of moie numbers) we
geb
dS=DQ/T+s-dn° (4-3)
(8=molar entropy). If we denote derivations along process trajectories by a dot, we
get from (4-3) the rate of entropy mentioned in Fig. 3.

The dissipation inequality of thermostatics is Olausius’ inequality which is
global in time and holds for diserete non-equilibrium systems. Here 7' and 8 are
quantities which belong to the controlling equilibrium reservoirs and not to the
system itself. The state space of thermostatics is a large one. The constitutive
equations desoribing material properties are represented by state functions. Some

historical hints are given in Fig. 4.

CARNOT 1824 cyclic processes
MAYER 1842
JOULE 1843 First Law
HELMHOLTZ 1847
THOMSON 1848 absolute temperature
CLAUSIUS 1850

Second Law
THOMSON 1851
CARATHEODORY 1909 inaccessible axiom
BORN 1921 inaccessible axiom

Fig. 4 Some historical dates in connection with thermostaties

5. Classical Irreversible Thermodynamics

Classical irreversible thermodynamics is based on the postulate of local equili—
brium (Fig. 5). If it holds, the variables of thermostatios are sufficient for a field
formulation which is local in position and in time. Because in that case temperature
and entropy are defined by thermostatics the balance equations of mass, momentum,
energy, and entropy can be formulated without additional assumptions. Therefore
the state space of irreversible thermodynamics is a large one just as that of
thermostatios. The entropy flux density is universal and equal to the heat flux
dengity over thermostatic temperature. The entropy production density is
representable as a scalar product of so called forces and fluxes. It is presupposed as
non-negative in the sense of a dissipation inequality being local in time"®. Besides
the four olassical irreversible phenomena, diffusion, heat conduction, internal
{riction and chemical reactions elestromagnetic phenomena and polarized materials
can also be included into irreversible thermodynamiocs. Of course in this theory the
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Local equilibrium:
Ri>Z: (a, n, #) (x, 1)
Balance equations:
mass, momentum, energy, entropy: p.§= -V ¢p+0o

¢=q/7,0=X-Y>0, diffusion
heat conduction
internal friction

chemical reactions

Constitutive equations: Y=L-X, X(—t)=A-X(t)
OCRR: L(—B, —, ---)=A-L(B, sy

Fig. b Classical irreversible thermodynamics

oonstitutive equations are lineariz>d and by using the state space of thermostatios
propagation paradoxa then ocour™*: The differential equations of diffusion and heat
conductivity are parabolio, what can not be right because ef physical reasons
propagation velocities should be finite. The coeflicients of the linearized constitubive
equations satisfy the Onsager—Casimir reciproocal relations (OCRR, Fig. 5). These
relations are restrictions beyond the Second Law following from symmetry under
time reversal®® 3%, Such restrictions of the constitutive equations are not to be
found in other disciplines of non-equilibrium thermodynamics up to now. Thig
fact produoced a lively discussion about the meaning of OCRR“%®. Some historical
dates with respeot to classical irreversible thermodynamios are given in Fig. 6

(N =Nobel prize winner).

THOMSON 1854 thermo-electric phenomena
De DONDER 1927 affinity
(N 1968) ONSAGER 1931 reciprocity relations
MEIXNER 1943 processes in chemical reacting media
CASIMIR 1045 reciprocity relations

(N 1977) PRIGOGINE 1947 textbook
1951 helium IT
De GROOT 1952 textbook

Fig. 6 Some historical dates in eonnection with classical

irreversible thermodynamics (N=Nobel prize winner)

6. Rational Thermodynamics

Historical rational thermodynamics is the thermal extension of rationa]
meonanics. Although manifold some representative prototypes of rational thermo-
dynamios can be specified™® (Fig. 7).
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First of all we will disouss
Clausius-Duhem theories which all
use in time local Clausius-Duhem
dissipation inequalities (CDI, Fig.
8) as analytical expression for
desoribing the Second Law. Here

rational

thermodynamies

Clausius—
Duhem

theories

global
dissipation

inequalities

entropy density and temperature

© are primitive conceptls, i. e.

both the quantities are not defined

theories
glohal in

theories
local in
position

physically.

position

Three of the ochosen sets of

theories local in position, Fig. 7 Scheme how rational thermodynamics
Truesdell et al. 26~ and Mueller

et al. ¥ two others are global in position, Green et al.®"

are
can be divided into

, and Eringen™’. Here
the non-localities are different in a characteristic manner: Whereas Green et al. use
the balance equations only in an integral from being valid for sufficiently small
but not arbitrarily small domains. Eringen modifies the balance equations by so
called residual which integrated over sufficiently large domains that do not

contribute to the integral balance equations. On the contrary to the three other

Truesdell | I. Mueller| I. S. Liu A. E. Green| Eringen
Coleman 1971 I. Mueller Naghdi 1972
Noll 1983 1972
1973
¢ k=0 A, v)q | k=aP-q k=0 k=0
a=—(2/5)f
F=T-DF
F=g(pT-®2)
¥ p(r/@) Af+ir |0 o(r/@) —ru | p(r/O)+p8
+ps
state space small large large small small
local in + + + - -
position IpudV=(J Ip§dV—=0
balance equa-| — + -+ — —
tions as con—
straints

Fig. 8 Clausius-Duhem theories presuppose the existence of CDI: ps+V-¢p—ry

=0>0, ¢p=q/O@+k. Entropy density and temperature are considered as

primitive concepts (o =entropy production density, y=entropy supply, r=heat
supply, P=traceless part of pressure tensor)
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theories Mueller et al. use large state spaces. Therefore the entropy density and the
entropy production 'density are state functions, and in these theories analogues
exist to Maxwell’s relations of thermostatios.

A further obaracteristic difference exists in exploiting the dissipation
inequality which in Clausius-Duhem theories is oonsidered as restriction for
constitutive equations. Usually those material functions (1-4) are not allowed
which for arbitrary proclesses (1-1)-i. e. without taking into consideration the
balanoce equations do not satisfy the dissipation inequality. On the eontrary Muelle
et al. do take into consideration the balance equations as restriction for exploiting
the dissipation inequality. He only separates those constitutive equations which do
not satisfy the dissipation inequality but belong to real processes, i. e. which are
solutions of the balance equations.

The relation between ¢ and @ is universal in theories with k=0 whereas in
those with k+0 it may be dependent on material properties. The coldness™® A (v, »)
(v=empirical temperature physically not defined) is taken for universal. This is
doubtful because of its dependence on » and can not be confirmed for multir-
component systems™*.

Extended thermodynamios is a Clausius-Duhem theory being local in position
and using large state spaces. The difference compared with the 1971-theory is the
choice of the' state space. Whereas the 1971-theory is a 5-field theory in the easiest
cagse-mass density, velocity or momentum density, and temperature or energy
density span the state space—extended thermodynamics uses a '13-dimensional state
space: mass density, velocity, momentum flux density, and energy flux density. T'he
usual balance equations of mass, momentum and energy which determine the stale
space in the 1971-theory, are replaced in extended thermodynamics by 13 balance
equations which belong to the 13 quantities spanning the state space. In extended
thermodynamics as well as in the 1971-theory the state space is determined by the
balance equations under consideration. This is of course a formal procedure because
constitutive equations desoribing material properties may be defined on other state
spaces which are not induced by the balance equations. As the 1971-theory
extended thermodynamios uses the balance equations as constraints exploiting the
dissipation inequality. Rational theories using dissipation inequalities being global
in time also stick to the shortcoming that temperature is considered as a primitive
ooncept. The only exception is Clausius’ inequality because here temperature and
entropy belong to the reservoirs controlling the proocess, and therefore they are
well defined. Meixner™ Day™ Coleman et al. ™% are using © as a primitive ficld
quantity (Fig. 9),

In these dissipation inequalities no non-equilibrium entropy appears. Meixner
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Classical

35 [(Q/T) +s-R]at<0

thermostatics

MEIXNER 1969 E [sa+(1/p) v+ (a/@)]dt=0

DAY 1972

COLEMAN, $ L1/p)v- (a/6) —r/61dt=0
OWEN 1974

Fig. 9 Dissipation inequalities being global in time

uses an equilibrium entropy which can be jinterpreted as entropy of an accom-—
panying process “”. This concept originates from non-classical thermodynamics
which we deal with in the next section. Finally we refer to a paper by Bataille and
Kestin™” in which rational thermodynamics is interpreted physically.

7. Non-Classical Thermodynamies

Non-classical thermodynamics is characterized by a dynamical oconcept of
temperature. A non-equilibrium temperature is defined operationally by a
dynamical measuring rule. Typical of the predecessors of non-classical thermo-
dynamics is the equal use of different concepts of temperature. So Gurtin et al.k?%
use beside the field temperature © a surface temperature = which ig different from @
(Fig. 10). Meixner ¥ introduces beside the field temperature T' the thermostatic
temperature 7', of the accompanying U-projection™?™ which is generated by a
special projection of the non-equilibrium trajectory (1-1) onto the equilibrium
sub-space. The dynamical measuring rule for a non—equilibrium temperature called
contact temperature @ is defined by a thermal contact between two discrete systems
one of them being a non—equilibrium system the other an equilibrium system?s-29,
For fixed state of the non-equilibrium system the direction of the heat exchange @
depends on the ther mostatic temperature 7' of the equilibrium system (Fig. 10).
There exists one and only one temperature T of the equilibrium system so ‘that
vanishes with change of sign. This temperature @=7, is called the contaot
temperature of the non-equilibrium system at a cerfain non-equilibrium state. Of
course the contact temperature depends on the state of the non—equilibrium system
as well as on the structure of the thermal contact “%’. Other contact quantities such
as pressure tensor and chemical potentials can be defined analogusly™.

A field formulation can be achieved for the contact temperature which is only
defined for disorete systems®”. An extension of Clausius’ inequality by using
contact temperature is possible’®4%), The relation between entropy flux density and
heat flux density depends on material properties.
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GURTIN

. ¥ +
y / . — / V=0
W1LLIAMS 1967 s,,(t)+3560 (a/1)-af Ig (pr/@)ar=

MEIXNER 1969 Sﬁ(Q/T)dtgo, 00q/OU=1/T,,
Contact QL(1/8) — (1/T)]=0
temperature O=0(z, t)
$L(@/8) +s-n1ar<0
k+0

S [

Fig. 10 Non-classical thermodynamics

8. Theories Using Evolution Criteria

In Clausius-Duhem theories dissipation inequalities are considered as constrainls
for the determination of constitutive equations. I[n theories which will now be
disoussed and which are developped from classical irreversible thermodynamios
dissipation inequalities serve as stability criteria. According to Prigogine et al. “*
the entropy production o (Fig. 5) of stationary states in open systems (Fig. 11) is
minimal with respect t0 non-stationary states.

PRIGOGINE stationary states in open systems
De GROOT 1954 o—min, (6<<0)
CHATELIER-BRAUN principle
c=X-Y>=0, Y-0X>0

GLANSDORFF,
ox: =Y -X<0
PRIGOGINE 1964
GLANSDORFEF, .
stability

NICOLIS, 2%
PRIGOGINE 1974

N
o

instability

Fig. 11 Theories using evolution criteria

The stationary states are located as “deep” asg the constraints allow (Fig. 12).
The stability of the stationary state is ensured by o<<0.

Chatelier—-Braun’s principle ¥ follows immediately for linear constitutive
equations. Here 8 is a variation of the stationary state (impossible process). If the
constitutive equations between X and ¥ (Fig. 5) are non-linear, the evolution
oriterion of Glansdorff et al.®’ holds (Fig. 11). A relation between Liapunow
stability and excess entropy &7 is postulated by Glansdorff et al. %,



34 EAYAE 3 i /3a 199

[1]
(2]
[3]
[4]
[5]
[6]
£71]

[8]
[9]
[10]
[11]
(12]
[13]
[14]
[15]
[16]
[17]

(18]
[19]
[20]
(213
[=2]
(23]
[24]

[25]
[26]
[27]

[28]
[29]
[30]
[31]
[32]
{33]
L:4]

2 (a'>o x,
o<

Fig. 12 Entropy production surface in the state space as Liapunow stability funection
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