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Preface

There are several good current probability books — Billingsley (1995), Durrett
(1991), Port (1994), Fristedt and Gray (1997), and I still have great affection
for the books I was weaned on — Breiman (1992), Chung (1974), Feller (1968,
1971) and even Loéve (1977). The books by Neveu (1965, 1975) are educational
and models of good organization. So why publish another? Many of the exist-
ing books are encyclopedic in scope and seem intended as reference works, with
navigation problems for the beginner. Some neglect to teach any measure theory,
assuming students have already learned all the foundations elsewhere. Most are
written by mathematicians and have the built in bias that the reader is assumed to
be a mathematician who is coming to the material for its beauty. Most books do
not clearly indicate a one-semester syllabus which will offer the essentials.

I and my students have consequently found difficulties using currently avail-
able probability texts. There is a large market for measure theoretic probability by
students whose primary focus is not mathematics for its own sake. Rather, such
students are motivated by examples and problems in statistics, engineering, biol-
ogy and finance to study probability with the expectation that it will be useful to
them in their research work. Sometimes it is not clear where their work will take
them, but it is obvious they need a deep understanding of advanced probability in
order to read the literature, understand current methodology, and prove that the
new technique or method they are dreaming up is superior to standard practice.

So the clientele for an advanced or measure theoretic probability course that is
primarily motivated by applications outnumbers the clientele deeply embedded in
pure mathematics. Thus, [ have tried to show links to statistics and operations re-
search. The pace is quick and disciplined. The course is designed for one semester
with an overstuffed curriculum that leaves little time for interesting excursions or
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personal favorites. A successful book needs to cover the basics clearly. Equally
important, the exposition must be efficient, allowing for time to cover the next
important topic.

Chapters 1, 2 and 3 cover enough measure theory to give a student access to
advanced material. Independence is covered carefully in Chapter 4 and expecta-
tion and Lebesgue integration in Chapter 5. There is some attention to comparing
the Lebesgue vs the Riemann integral, which is usually an area that concerns stu-
dents. Chapter 6 surveys and compares different modes of convergence and must
be carefully studied since limit theorems are a central topic in classical probability
and form the core results. This chapter naturally leads into laws of large numbers
(Chapter 7), convergence in distribution, and the central limit theorem (Chapters 8
and 9). Chapter 10 offers a careful discussion of conditional expectation and mar-
tingales, including a short survey of the relevance of martingales to mathematical
finance.

Suggested syllabi: If you have one semester, you have the following options:
You could cover Chapters 1-8 plus 9, or Chapters 1-8 plus 10. You would have
to move along at unacceptable speed to cover both Chapters 9 and 10. If you have
two quarters, do Chapters 1-10. If you have two semesters, you could do Chapters
1-10, and then do the random walk Chapter 7 and the Brownian Motion Chapter
6 from Resnick (1992), or continue with stochastic calculus from one of many
fine sources.

Exercises are included and students should be encouraged or even forced to do
many of them.

Harry is on vacation.
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cils with me. Nathan has stopped attacking my manuscripts with a hole puncher
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1

Sets and Events

1.1

Introduction

The core classical theorems in probability and statistics are the following:

e The law of large numbers (LLN): Suppose {X,,n > 1} are independent,

identically distributed (iid) random variables with common mean E (X,) =
w. The LLN says the sample average is approximately equal to the mean,

so that
l n
- E X; - u.
n 4
i=1

An immediate concern is what does the convergence arrow “—” mean?
This result has far-reaching consequences since, if

X = 1, ifevent A occurs,
‘7| 0, otherwise

then the average 3/, X;/n is the relative frequency of occurrence of A in
n repetitions of the experiment and u = P(A). The LLN justifies the fre-
quency interpretation of probabilities and much statistical estimation theory
where it underlies the notion of consisrency of an estimator.

Central limit theorem (CLT): The central limit theorem assures us that sam-
ple averages when centered and scaled to have mean 0 and variance 1 have
a distribution that is approximately normal. If {X,,n > 1} are iid with
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common mean E (X,) = u and variance Var(X,) = a2, then
n X - x  -u?)2
P[M Ex]"N(X):zf ¢ du.
oJ/n —00 27

This result is arguably the most important and most frequently applied re-
sult of probability and statistics. How is this result and its variants proved?

e Martingale convergence theorems and optional stopping: A martingale is
a stochastic process {X,,n > 0} used to model a fair sequence of gam-
bles (or, as we say today, investments). The conditional expectation of your
wealth X+ after the next gamble or investment given the past equals the
current wealth X,;. The martingale results on convergence and optimal stop-
ping underlie the modern theory of stochastic processes and are essential
tools in application areas such as mathematical finance. What are the basic
results and why do they have such far reaching applicability?

Historical references to the CLT and LLN can be found in such texts as Breiman
(1968), Chapter I; Feller, volume I (1968) (see the background on coin tossing and
the de Moivre-Laplace CLT); Billingsley (1995), Chapter 1; Port (1994), Chapter
17.

1.2 Basic Set Theory

Here we review some basic set theory which is necessary before we can proceed
to carve a path through classical probability theory. We start by listing some basic
notation.

e Q: An abstract set representing the sample space of some experiment. The
points of 2 correspond to the outcomes of an experiment (possibly only a
thought experiment) that we want to consider.

e P(R2): The power set of £2, that is, the set of all subsets of €2.

e Subsets A, B, ... of  which will usually be written with roman letters
at the beginning of the alphabet. Most (but maybe not all) subsets will be
thought of as events, that is, collections of simple events (points of £2).

The necessity of restricting the class of subsets which will have probabili-
ties assigned to them to something perhaps smaller than P(2) is one of the
sophistications of modern probability which separates it from a treatment
of discrete sample spaces.

e Collections of subsets A, 3, ... which will usually be written by calligraphic
letters from the beginning of the alphabet.

e An individual element of 2: w € 2.
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e The empty set @, not to be confused with the Greek letter ¢.

P() has the structure of a Boolean algebra. This is an abstract way of saying that
the usual set operations perform in the usual way. We will proceed using naive set
theory rather than by axioms. The set operations which you should know and will
be commonly used are listed next. These are often used to manipulate sets in a
way that parallels the construction of complex events from simple ones.

1. Complementation: The complement of a subset A C 2 is

A ={w:w¢ A}

2. Intersection over arbitrary index sets: Suppose T is some index set and for
eacht € T we are given A, C Q. We define

ﬂA, ={w:we A, VYieTl
teT

The collection of subsets {A,, t € T} is pairwise disjoint if whenevert,t’ €
T, butr # t’, we have

A‘ nA” = ﬁ.

A synonym for pairwise disjoint is mutually disjoint. Notation: When we
have a small number of subsets, perhaps two, we write for the intersection
of subsets A and B

AB=ANBSB,

using a “multiplication” notation as shorthand.

3. Union over arbitrary index sets: As above, let T be an index set and suppose
A; C Q. Define the union as

UA, ={w:we A, forsome t €T).
teT

When sets Ay, Az, ... are mutually disjoint, we sometimes write
Al +A2+...
oreven Y o, A; to indicate US2, A;, the union of mutually disjoint sets.
4. Set difference Given two sets A, B, the part that is in A but not in B is
A\ B := AB“.
This is most often used when B C A; that is, when AB = B.

5. Symmetric difference: If A, B are two subsets, the points that are in one but
not in both are called the symmetric difference

AAB=(A\B)U(B\A).
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You may wonder why we are interested in arbitrary index sets. Sometimes the
natural indexing of sets can be rather exotic. Here is one example. Consider the
space USC ([0, 00)), the space of non-negative upper semi-continuous functions
with domain [0, 00). For f € USC, ([0, 00)), define the hypograph hypo( f) by

hypo(f) = {(s,x): 0 < x < f(s)},

so that hypo( f) is the portion of the plane between the horizontal axis and the
graph of f. Thus we have a family of sets indexed by the upper semi-continuous
functions, which is a somewhat more exotic index set than the usual subsets of
the integers or real line.

The previous list described common ways of constructing new sets from old.
Now we list ways sets can be compared. Here are some simple relations between
sets.

1. Containment: A is a subset of B, written A C Bor B D A,iff AB = A or
equivalently iff v € A implies w € B.

2. Equality: Two subsets A, B are equal, written A = B, iff A C B and
B C A. Thismeans w € A iff w € B.

Example 1.2.1 Here are two simple examples of set equality on the real line for
you to verify.

() US2,[0, n/(n+ 1)) = [0, 1).
(i) Mhe;(0,1/n) = 0. o
Here are some straightforward properties of set containment that are easy to

verify:

ACA,

A C Band B C C implies A C C,
ACCand B CCimpliessAUB CC,
A D Cand BDC impliess AB D C,
A C B iff B C A€

Here is a list of simple connections between the set operations:
1. Complementation:

(A=A, 0°=Q, Q=0

2. Commutativity of set union and intersection:

AUB=BUA, ANB=BNA.
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Note as a consequence of the definitions, we have

AUA=A, ANA=A,
AUB=A, ANPG=29
AUQ=Q, ANQ=A,
AUA=Q, ANA‘ =0

3. Associativity of union and intersection:
(AUBY)UC =AUBUC), (ANB)NC =ANBNC).

4. De Morgan’s laws, a relation between union, intersection and complemen-
tation: Suppose as usual that T is an index set and A, C 2. Then we have

JAar =N@n, (A =Junn.

teT teT teT teT

The two De Morgan’s laws given are equivalent.
5. Distributivity laws providing connections between union and intersection:

Bn(UA,) = |Jman,

teT teT

BU (ﬂ A,) (B UA).
teT teT

I

1.2.1 Indicator functions

There is a very nice and useful duality between sets and functions which empha-
sizes the algebraic properties of sets. It has a powerful expression when we see
later that taking the expectation of a random variable is theoretically equivalent to
computing the probability of an event. If A C €2, we define the indicator function
of A as

1, ifweA,
W@ =10 iftweac

This definition quickly yields the simple properties:
14 <1piff A C B,

and
lAC = 1 - ].A.
Note here that we use the convention that for two functions f, g with domain Q
and range R, we have
f <giff f(w) < gw) forallw € Q

and
f=gif f<gandg < f.
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1.3 Limits of Sets

The definition of convergence concepts for random variables rests on manipula-
tions of sequences of events which require limits of sets. Let A, C 2. We define

inf Ay = ﬂAk, sup Ag = UA;,

k>’l k>’,
liminf A, = U ﬂAk,
nroo n=1k=n
hmsupA,, = m U Ag.
n=1k=n

The limir of a sequence of sets is defined as follows: If for some sequence {B,} of
subsets
limsup B, = hm lnf B, = B,

n—00

then B is called the limit of B, and we write lim,—, o B, = B or B, — B. It will
be demonstrated soon that

liminfA, = lim (mfAk)

n—00 n—+00 \ k>n

and
limsup A, = lim (supAk).

n—00 n—=00 \ k>n

To make sure you understand the definitions, you should check the following
example as an exercise.

Example 1.3.1 Check

hmmf[O n/(n + 1)) = limsup[0, n/(n + 1)) = [0, 1). O

n— 00
We can now give an interpretation of liminf, .o A, and limsup,,_, ., A,.

Lemma 1.3.1 Let (A,} be a sequence of subsets of Q.
(a) For lim sup we have the interpretation

o0
limsup A, = [a) 1Y 1a, (@) = oo]
n=1

n—00
={w:weA, k=12...}

for some subsequence ny depending on w. Consequently, we write

limsupA, = [A, Lo. ]

n—00
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where i.0. stands for infinitely often.
(b) For lim inf we have the interpretation

lim E)r‘l)fA,, =|w : w € Ap for all n except a finite number }
={w: ZIA;(w) < oo}
n
={w:we A,,Vn > ngp(w)}.

Proof. (a) If
oc oo
w € limsup A, = ﬂ U Ak,

B=EOD n=1k=n

then for every n, w € Ux>, Ak and so for all n, there exists some k, > n such that
w € Ayg,, and therefore

oC
D 14,(@) 2 Y 1, (@) = o0,
j=1 n
which implies
oo
w € [w: ZlAn(w)=oo];
n=1
thus

n—o0

o0 -
limsupA, C {w: Z 14 (w) = oo}.
j=1

Conversely, if

)
w € {w:ZlAJ(w)‘:OO},
J=1

then there exists k, — 00 such that w € Ag,, and therefore foralln, w € Uj>,A;
so that w € limsup,_, . A,. By defininition

o
{w: Z 14, (w) = oo} C limsup A,.

=1 n— 00

This proves the set inclusion in both directions and shows equality.
The proof of (b) is similar. O

The properties of lim sup and lim inf are analogous to what we expect with real
numbers. The link is through the indicator functions and will be made explicit
shortly. Here are two simple connections:

1. The relationship between lim sup and lim inf is

liminf A, C limsup A,
n=>00 n— 00



