3.5"IBM PC
Compatible
Disk
Enclosed

rtans

i

CLASSES

Data Structures and Algorithms Using C++

RICK DECKER
STUART HIRSHFIELD
Hamifton College

%
PWS Publishing Company

I(@P International Thomson Publishing Company

B Z: Working Classes : Data Structure and Alc st
fE Z: R.Decker, S.Hirshfield
FoiE 2. THEER. EE . | &JUCHER
H R EF: HFEBHRASLRLE
6Bl F: ERPEEDRIT
R OT HREBHRAGEGERELE GERFEEITAKE 1375 100010)
FF A: K327 850 X 1168 E1 %k: 16.125
B R 1998FE 3AEIR 1998E8 AHE | KENH|
5

: 7-5062-3819-5/TP= 34
M Eie: BF 01-98-0369
E #r: 88.00 T

BB HME L AL F 2 SIS K8 International Th Publishing FIREFE
HEARREEDALT.

PWS PUBLISHING COMPANY
20 Park Plaza, Boston, Massachusetrs 02116-4324

Copyright © 1997 by Intemnational Thomson Publishing Inc.

ALL RIGHTS RESERVED. No part of this book may be reproduced or transmitted
photocopying, recording or any information storage and retrieval system, without permission, in

writing, from the publisher.

(TP~

For more information contact:

International Thomson Publishing
The trademark ITP is used under license.

Th Nelson Australia

PWS Publishing Co. International Th Publishing Japan
20 Park Plaza Hirakawacho Kyowa Building, 31
Boston, MA 02116 2-2-1 Hirakawacho

Chiyoda-ku, Tokyo 102
Japan

International Thomson Publishing Europe
Berkshire House 168-173

International Thomson Editores
Campos Eliseos 385, Piso 7

High Holborn Col. Polanco
London WC1V 7AA 11560 Mexico D.F., Mexico ~
England

International Thomson Publishing Asia
221 Henderson Road

#05-10 Henderson Building
Singapore 0315

International Thomson Publishing GmbH
Konigswinterer Strasse 418
53227 Bonn, Germany

102 Dodds Street
South Melbourne, 3205
Victona, Australia

Nelson Canada

1120 Birchmount Road
Scarborough, Ontarno
Canada M1K 5G+

Library of Congress Cataloging-in-Publication Data
Decker, Rick.

Working classes: data structures and algonthms using C++ / Rick Decker,
Stuart Hirshfield

p.cm.

Includes index.

ISBN 0-534-94566-X

1. C++ (Computer program language)
1. Hirshfield, Stuart. II. Tidle.
QA76.73.C153D44 1996 94-43941
005.7'3—dc20 CIP

2. Data structures (Computer science)

This book 1s printed
on recvcled, acid-free
paper.

®

Sponsoring Editor: Michael J. Sugarman
Developmental Editor: Mary Thomas
Production Editor: Abigail M. Heim
Marketing Manager: Nathan Wilbur

Marufacturing Coordinator: Lisa Fl
Editorial Assistant: Benjamin Steinberg

Interior Designer: Catherine Hawkes Design

Cover Designer: Julia Gecha

Cover Artist: Angela Perkins

Typesetter and Interior [llustrator: Electric Ink, Led.
Cover Printer: New England Book Components

Text Printer and Binder: Quebecor Printing/Martinsburg

Cover Image: The SteelTec™ product ©1993 by Remco
Toys, Inc. All rights reserved. Used with permission.

Printed and bound in the United States of America.
97 98 99—9 87 6 5 4

For Natty, Adam, Ben, and Shauna

Over the vears, we've had a number of students who have said, in one
form or another, “I want to be a computer scientist because I really like
programming and am very good at it.” Of course computer scientists, both
novices and seasoned veterans, are often called upon to write programs, but
to equate computer science with programming is to confuse the product with
the process. Being an excellent draftsman who can faithfully represent a scene
on paper is no guarantee that your works will eventually hang in the Merro-
politan Museum. It’s a step in the right direction, but an artist must also have
an intimate familiarity with the more general principles of composition, per-
spective, color and so on.

In essence, programming is lictle more than the efficient management of a
particular kind of large intellectual process, and the guidelines for good pro-
gramming are nothing but the application of common-sense principles that
apply to any complex creative task. It goes without saying, though, that be-
fore you can think efficiently vou have to have something to think about,
which for our purposes means that in order to write good programs. you
must have an idea about how information may be represented in a program.

Computer science is a young discipline, but has developed enough over
the past few decades to gain a consensus about what should constitute the
core data structures. In this book, we have tried to caprure this core by pro-
viding whar might be called the “classic” data structures—the most common-
ly applied methods for representing information in a computer program—
along with the algorithms for manipulating this information. In terms of
things to think about for programming, this book offers a collection of tools
that should be part of the working knowledge of any programmer.

XV

PREFACE

This book is not about programming, however. Computer science is a
science, and as such mainly seeks a theoretical framework that can be used to
describe the behavior of the objects under study, which in our case are com-
puters and their programs. One of the objectives that have determined the
form of the book is to provide a broad view of what a dara structure really is.
In our approach, data structures are not just a collection of ad hoc type dec-
larations and function definitions, but rather any data structure is a particular
instance of an abstract data type, which consists of (1) a set of positions and
a set of elements associated with the positions; (2) a logical structure defined
on the positions; and (3) a collection of structure-preserving operations on
the positions and the elements they “contain.”

We have chosen to define the structure of an abstract data type by speci-
fying a structural relation on each set of positions. Doing so provides a natur-
al progression of the chapters, where each new abstract data type is intro-
duced by removing some of the structural restrictions from a prior type. Thus
we begin with lists, whose structure is defined by a linear order, and progress
to trees by removing the requirement that each position have a unique succes-
sor, then to directed graphs by removing the requirement of a unique prede-
cessor, and finally to sets, where there is no structure ar all on the positions.
Throughout this process, we see that each new abstract data type still can be
described by the threefold view of a collection of positions with a structural
relation and a collection of structure-preserving operations.

Some History

After using Pascal in this course for five years, it was clear to us that, for all
its strengths as a teaching language, Pascal is not the most felicitous choice as
a vehicle for a course in data structures.. An abstract data type is nothing
more than a collection of data and operations on that data, and that, of
course, is the definition of a class. When preparing to write the book you
have before you. we considered several object-oriented languages and finally
settled on C++, largely because of its popularity. We'd be the first to admit
that C++ has its warts and blemishes, but in our opinion it is the appropriate
choice at present.

The Audience

Though we did nort set out to tailor this book to any preexisting curriculum,
it turned out that it covers essentially all of CS2 and part of CS7, as described
in the ACM Curriculum '78, and a subset of the union of CS2 and CO2, set
forth in Norman Gibbs and Alan Tucker’s 1985 Model Curriculum for a Lib-
eral Arts Degree in Computer Science. The material contained here should be
covered early in any computer science curriculum, and we have written this
book for an audience of first and second year students in computer science

PREFACE xvii

who are familiar with C or (preferably) C++. For those readers whose back-
ground is Pascal, we provide a Pascal-C++ “dictionary” in Appendix A. A
course in discrete mathematics is desirable as a pre- or corequisite for this
material, but the relevant mathematical background is summarized in Appen-
dices B and C for those who need it.

The Contents

Our intent has been to write a book that could be used as the basis for a se-
mester-length course in data structures or advanced programming. Realizing
that the subject matter of this book comes at an early stage in the education
of a computer scientist, we included a number of mentions, necessarily brief,
of some of the topics awairing the student down the road. Most of the canon-
ical sorting and searching algorithms are covered, along with mentions of
computational complexity, compiler design, unsolvable problems, NP-com-
pleteness, and fundamental paradigms for algorithms. We believe that one
can never have enough exercises—this book has 359, by actual count, and
each chapter concludes with an optional Explorations section, where we treat
interesting topics that extend the material of the chaprer.

Chapter 1 covers some of the necessary preliminaries, such as program
design, the definition of an abstract data type, and assertions and program
verification. We begin by specifying an array as an abstract data type, and
conclude with the Number ADT that represents integers of arbitrary size.
Chapter 2 describes the List ADT and continues the preliminary material of
Chapter 1 by discussing parametrized classes and functions, big-O notation,
and timing of algorithms. The chapter concludes with a discussion of memo-
ry management. In the Explorations section, we discuss sorted lists and
searching, along with self-organizing lists.

In Chapters 3 and 4 we continue the investigation of linear dara struc-
tures. Chapter 3 covers strings and introduces the Boyer-Moore string search
algorithm. Chapter 4 covers the remaining standard linear structures, stacks
and queues, motivating these by applications to manipulate postfix expres-
sions. The Explorations cover stack-based maze traversal and a simple oper-
ating system simulation. Since a considerable number of queue applications
involve simulation, Appendix C (Random Numbers and Simulation) may be
useful at this point.

Chapter 5 provides a segue into nonlinear structures by introducing re-
cursion and recursively defined data structures. Timing estimates for recursive
algorithms are covered in depth, along with an introduction to LISP. We deal
with Quicksort ‘in the Explorations. Appendix B, which covers logarithms
and exponentials, induction, and elementary combinations, is helpful supple-
mentary material at this stage.

Chapters 6 and 7 cover trees. Chapter 6 provides the necessary back-
ground on binary trees and their implementations, traversal algorithms, and
treesort; and the Explorations discuss threaded trees, minimal-length codes,

xviii

PREFACE

and tries. Chapter 7, which can be omitted if necessary, covers two exten-
sions of binary search trees, namely AVL trees and B-trees.

Chapter 8 covers graphs and digraphs, along with a representative sam-
ple of graph algorithms for traversal, spanning trees, minimal-cost paths,
minimal spanning trees, and an introduction to complexity theory through
the Traveling Salesperson Problem. In the Explorations, we discuss topologi-
cal sorting and applications of powers of the adjacency matrix.

Chapter 9, on sets, describes bit vector, list implementations of sets, dic-
tionaries, and associations, and provides a comprehensive introduction to
hashing. The chapter concludes with PriorityQuere ADT and heapsort. In
the Explorations, we continue our discussion of hashing and introduce the
DisjointSet ADT.

In Chapter 10 we consider the problem of regenerating text from a large
sample and trace the development of programs to solve this problem. using a
real computer/compiler system to show how practical time and space con-
straints arise from choices of data structure.

Supplementary Material

In addition to the dara disk (IBM PC compatible) included with this book, an
Instructor's Manual is available from the publisher. A Macintosh version of
the dara disk is also available from the publisher.

Acknowledgments

A lot of people deserve praise for seeing this book through to completion.
Thanks go to Billy Lim, Illinois State University, Barbara Boucher Owens, St.
Edward's University, and Daniel Ling, Okanagan University College, for
their thoughtful reviews; and to our students and colleagues for suggesting
countless changes in earlier versions. Special kudos go rto the folks at PWS
Publishing, especially Mike Sugarman and Ben Steinberg (the Batman and
Robin of publishing), Abby Heim (who held her nervous breakdown at bay
throughout an insanely busy production process that included working on
wwo of our books simultaneously), J. P. Lenney (for picking out great wines
and picking up the tab), and Nathan Wilbur (for just being Nathan). Writing
and producing a book is a task that rates up there on the discomfort scale
with cholera, excepr that writing rakes longer. It can never be called pleasur-
able, but the friendship and warmth of the PWS crew at least has made it
bearable.

Rick Decker
Stuart Hirshfield

PRELIMINARIES 3

1]

K
13

14

15
16

ADTs: ABSTRACTION AND ENCAPSULATION 4

Abstraction 5
Reuse and Encapsulation 7
ADTs. OOP, and Things to Come 7

ADT: INTEGERARRAY 8

IMPLEMENTATION 13
Defining Integer Arrays 13

COMPUTER SCIENCE INTERLUDE: ASSERTIONS
AND VERIFICATION 18

Assertions |8
Verification 19

APPLICATION: MULTIPRECISION ARITHMETIC 23

Declaring the Number Class 25
Defining the Number Class 27

SUMMARY 36

vii

viii

17
18

PART
TWO

CONTENTS

EXERCISES 36

EXPLORATIONS 44

Representation of Integers 44
Bit Vectors 45

LISTS 49

el
e

4

ed

£.d

e.b
e
e

ADT: LIST 50

Parametrized Classes 53

IMPLEMENTATIONS 55

Arrays 55

Linked Lists 63

COMPARING IMPLEMENTATIONS 75

Space 75

Time 76
Comprehensibility 77
Trade-Offs 78

COMPUTER SCIENCE INTERLUDE: MEASURES
OF EFFICIENCY 78

Algorithms 79

Big-O 8l

Order Arithmetic 83

Timing Functions 85

APPLICATION: MEMORY MANAGEMENT 89

Allocation 92
Deallocation 94
Compaction 98

SUMMARY 100
EXERCISES 100

EXPLORATIONS 111

Sorted Lists 111
Self-Organizing Lists |15

CONTENTS

STRINGS 117

3]

32

33
34
3.3
36

ADT: STRING 117

(S)trings, (s)trings, and Arrays |18
Lexicographic Order 121
Declaring Strings 122

IMPLEMENTATION 124
Efficiency 130

APPLICATION: STRING MATCHING 132
SUMMARY 139
EXERCISES 140

EXPLORATIONS 144
Advanced Pattern Matching 144

OTHER LINEAR STRUCTURES 146

4]
4

43
44
45

T

4]
48

ADT: STACK 146

IMPLEMENTATIONS OF STACK |51

Efficiency Issues |51
Stacks as a Derived Class 152
Stacks from Scratch 153

APPLICATION: POSTFIX ARITHMETIC 154
ADT: QUEUE 157

IMPLEMENTATIONS OF QUEUE 158

Queues as Linked Lists 159
Circular Arrays and Queues 160

APPLICATION (CONTINUED): INFIX TO POSTFIX
CONVERSION 163
Verification 166

SUMMARY 166

EXERCISES 167

CONTENTS

49 EXPLORATIONS 173

The Electronic Labyrinth 173
Operating System Simulation 178

PART
THREE

5 RECURSION 183
’ 5] RECURSIVE ALGORITHMS 183

Induction and Recursion 190

5 E TIMING RECURSIVE ALGORITHMS 191

5 3 COMPUTER SCIENCE INTERLUDE: DESIGN OF
" ALGORITHMS 196

5 4 RECURSIVE DATA STRUCTURES 202
" General Lists and LISP 204

55 SUMMARY 211
55 EXERCISES 212

57 EXPLORATIONS 219
" Quicksort 219

6 Trees w3

/ E'i THE STRUCTURE OF TREES 224

EE ADT: BINARYTREE 228

53 BINARY TREE TRAVERSALS 231

84 IMPLEMENTATION OF BINARYTREE 236

ﬁ 5 COMPUTER SCIENCE INTERLUDE: PARSE TREES 240

CONTENTS

B 6 DATA-ORDERED BINARY TREES 242

Binary Search Trees 244
Application: Treesort 251

67 SUMMARY 252
EH EXERCISES 253

Eg EXPLORATIONS 257

Threaded Trees 257
Preamble: Tree Applications 259
Huffman Codes 261

Tries 265

SPECIALIZED TREES 268

7] BALANCED TREES 269

AVL Trees 270
Efficiency and Verification 277

7E B-TREES 277

k-ary Trees, Again 278
B-Trees Explained 279
Application: External Storage 289

73 SUMMARY 293

74 EXERCISES 294

GRAPHS AND DIGRAPHS 297
H 'l ADT: GRAPH 298

H E IMPLEMENTATIONS OF GRAPH 302
' Adjacency Matrices 302
Adjacency Lists and Edge Lists 305
B 3 GRAPH TRAVERSALS 311

Depth-First Traversals 31|
Breadth-First Traversals 312
Spanning Trees 314

xi

xii

CONTENTS

H4 APPLICATION: MINIMUM SPANNING TREES 317
ﬂ 5 DIRECTED GRAPHS 319
’ Application: Cheapest Paths 320

H E COMPUTER SCIENCE INTERLUDE: COMPUTATIONAL
" COMPLEXITY 326

37 SUMMARY 330
HB EXERCISES 331

Hg EXPLORATIONS 336

Topological Sorting 336
Counting Paths 338

UNORDERED COLLECTIONS 342
] ADT:SET 342

g E IMPLEMENTATIONS OF SET 345

Bit Vectors 345
Sets Represented by Lists 348

93 ADT: DICTIONARY 352

Associations 352

94 HASHING 356

Open Hashing 362
Time and Space Estimates 363

9 5 APPLICATION: A PROBABILISTIC SPELLING
" CHECKER 366

95 ADT: PRIORITYQUEUE 369
’ Application: Heapsort 375

97 SUMMARY 376
ga EXERCISES 377

99 EXPLORATIONS 380

Hashing, Continued 380
The DisjointSet ADT 383

CONTENTS

Tree Representations of DisjointSet 384
Application: Minimum Spanning Trees, Revisited 389

TRAVESTY: PUTTING IT ALL TOGETHER

101

102

103

104
10.3
106

>P» P PPP

o oe®
s W -

o~V s W N -

THE PROBLEM 391

THE SOLUTIONS 396

Arrays 397
Hashing 401
Tries 408
A Guest Author 416

APPLICATIONS 416

Reactive Keyboards 417
Coding, Once Again 418

SUMMARY 419
EXERCISES 420

EXPLORATIONS 422
Long Strings 422

391

APPENDIX A: A Pascal-C++ Dictionary 425

Information 426

Program Structure 428
Statements 430

Compound Data Types 434
Pointers and References 435

Two Sample Programs 437

APPENDIX B: Topics in Mathematics 444

Exponential and Logarithmic Functions 444
Induction 449

Counting Techniques 451

Exercises 455

xiii

xiv CONTENTS

APPENDIX C: Random Numbers and Simulation 459

Random Numbers 460
Probability Distributions 462
Selection Algorithms 469
Exercises 473

0no0oon0n
A

APPENDIX D: Specifications of the ADTs Used
in the Text 475

Index 487

