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Abstract
This textbook contains six chapters. covering reviews on linear algebra; matrix functions; matrix
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Preface

As a branch of mathematics, matrix theory has long been a fundamental tool in other
mathematical disciplines such as numerical analysis, probability theory. statistics,
optimization, and has fertile applications in computer science, machine learning, economics,
signal processing, etc.

Throughout this book, we tend to pay more attention on the computational aspects of
matrix theory, despite that we also have presented detailed proofs of some important results.
Thus, this book emphasizes the basic concepts, practical formulas, and a wide variety of
examples.

The material of this textbook is standard in that the topics covered are linear algebra;
matrix functions; matrix decompositions such as QR decomposition, full rank
decomposition, singular value decomposition, spectral decomposition; generalized inverses;
tensor product; nonnegative matrices. These contents are divided into six chapters, of which
each corresponds to a topic.

In this textbook, we provide basic concepts and classical results of matrix theory. The
book is designed to help the senior undergraduate students, or junior graduate students in
science and engineering to master the material of a standard matrix theory course, and of
course could also be used as a self-contained reference for a variety of readers. There are no
prerequisites other than some basic knowledge of linear algebra such as linear space, linear
transformation, the Jordan canonical form and so on, which, however, will be reviewed in
the first chapter.

We appreciate our colleague Prof. Chen Zuming for contributing valuable reviews and
suggestions, and we are grateful to students who have taken a lot of time to convey their

reactions to the class while preparing this book.

Li Hongyi Zhao Di
Beihang University
January, 2014



Contents

Chapter 1 Introduction to Linear Algebra T P TR TR T PRI |

1. The JiNear SPACe «-+++++++eeesrererrrtarstntrruuttrirs bttt ses st sestes st se beean cesesan e
Fields and mappings
Definition of the linear space

1
1 1
2 2
B Basis aTd GHAEHGIOR e s omewe onviwes oomosame s mainin Siais AisWas wibbas sakiins s 5ties 4 ssems s, of
4 Coordinate 6

5 8

Transformations of bases and coordinates =tretresreeremeeeieiiiitiiaitciiaiannans

— et e e e
. . . .

.6 Subspace and the dimension theorem for vector spaces r-rereresrsseceeneeieaies 9

Linear transformation and MALTICES +rrrreerresrerenettttaientttietssssstsssrecsassecsnsnees |3

1
1
1
1
1
1
1
2
1.9 1 Lineat trarisFOrmatiGnn w5 s5oes s somes + 65,558 a45:585 05 70 40,050,658 aT008 §5aiwnd voesi s ssomn s v 13
1.2.2 Matrices of linear transformations and isomorphism eseereseerecieeeini 14
3 FEigenvalues and the Jordan canonical form «=-essesseesmerinnimnininiiii i 17
1.3.1 FEigenvalues and eigenvectors -+« sssesseeesresuirmiiienniuiiiiieeees 18
1.8.2 Diagonal matrices s«-«stss ssusss snoss suvvssesanasss sesses sunsas swssss aue s swasos savinssvs 20
1.3.3 Schur’s theorem and the Cayley — Hamilton theorem ««««teceverecerieicnciiiens 23
1.8.4 The Jordan canonical forn wsssssesssassasns ssswns oasns manns sssmes somwar ssvsws vasown sss D5
1.4

EXCreise 1. sssiss sioies saninss sswinss aisises soisies sasdoaions sosisss s5oime s vaiesn o seeiss o somes s sviwens spons sowos so0 33

Unitary Ry o Lo S R T L PR L LR P LR P LR LR 3

Chapterz Matrix Analysis T D R TR TP 4

VECLOD TIOLIIL et 35aee smmsess s56RRS S350 Ssimse SHAaR4 SHRIEES ToTes Sapwes SHaiess ssiues swntes Lowas s 37
M lakrion EIOrID, 65 ey s SxENResE BoraFs vRR AR SEUSH R NGRS YOV SRS wHAeA TRENNY hawEA e 10
Matrix sequences and Serles s ssssss wsuss snsurs saners sssens soniees svsoss suswon axsssn voswmn ovs 48
Matrisc function  ssesssssss ssmss ssins 46 § sxomes sases (esiiss s5aises aisss spives wosies soamas sue 55
Differentiation and integration Of MAtrices ceseeecrrerectecscctectstreccsnescsnssecnnsscsss 62

Applications Of Matrix fUNCLIONS  tererrrerernnenctictiitietiotintiosenasecssssssssesssases §6

NNNNNNE\'}
S U1 s W DN

.7 Estimation of eigenvalues B T P 1<

Exercise 2 B I 4
Chapter3 Matrix Decomposition LR P P P R T T TR I4 §

3.1 OR decOmpOSItion +++«ss+sseesssesetsnetestssanstsoresnecensasanssssassenesensessnsssasesnnsanses T4



Introduction to Matrix Theory

3. 2 FU“ rank decompositiOn T L L I

+3

3

Singular value decOmpPOSItION «r« s s sessrssresmeumsis i ettt e

- 85

3.4 The spectral decomposition

Exercise 3

Chapter 4 Generalized Inverse

4
4
4
4

.1
w2
.3
.4

The generalized inverse of a matrix
A{l},A{1.3} and A{1,4}

The Moore — Penrose inverse A™

The generalized inverses and the linear equations =«-«srereereerreeieeniinnenen.

Exercise 4

Chapter 5 Tensor Produet - ssceesrstes i imt ittt it it ittt et et

(92} (&2

(92

FEXETCISE |5 «sswswass mon vosmovasssss yoamos soeses sanass Foudss SHEsss s £.50s subEoe yooinss Suans S Kkip QUaEsaNE £

.1
.2
.3

1

Definition and properties of the tensor product Seesee sueisis seseEn sesans ses ese sss s e sen

The tensor product and eigenvalues

Straighten Operation OT TTIALTTICES *++rrsss et annassonesssassonsosesssassanssnesssssssssansnes

The tensor product and matrix equation o suiae s SR s §NAeNE ¢ selee § Hisine Seliuies Beln Seiaiee s dies

Chapter 6 Introduction To Nonnegative Matrices

6
6
6.
6
6
6

- W N

(@3]

.6

Preliminary properties on nonnegative matrices

Positive matrices and the Perron theorem

Irreducible nonnegative Matrices «««««ssssseesrusmmsmieminmnn i e e

Primitive matrices and M matrices

StOCRHASTIC TNIATTICES *v e vcecreereoseatsansass e taseseeseoteareastesseoseasensencsasssssonsanssnssns

Two models of nonnegative matrices

Exercise 6

S (S e 1 8 o T T N

77
80

- 89

- 91

- 91
- 92
- 95

101

- 106

108

108

- 112

115
116
121

- 124

124
127
130
133
135

- 136
- 138

139



Chapter 1
Introduction to Linear Algebra

The aim of this chapter is to review some basic knowledge about linear algebra.

1.1 The linear space

1.1.1 Fields and mappings

In discussing mathematical problems,it is necessary to determine the scope of numbers
considered. For instance, when solving a single-variable quadratic equation,if we consider in
the scope of real numbers,the equation may have no solutions. However,there always exist
complex solutions. That is to say,considering the same problem in different scopes may yield
different solutions. On the other hand, different sets of numbers may have common
properties. In order to unify these common properties,we will introduce a general concept.

Definition 1.1.1 Let K be a set of numbers containing at least one nonzero number, If
the sum,difference, product and quotient of any two numbers in K is still a number in K,
then K is called a field.

It is not difficult to verify that the sets of all rational numbers Q, real numbers R and
complex numbers C are fields, which could be called the rational filed,real filed and complex
field,respectively. While,neither of the sets of natural numbers and integers can be called a

field. A slightly more difficult instance is the set described as the following:

at+by2, (a,b€ Q)
which also constitutes a filed. Besides these fields, we can still find many (infinite exactly)
fields.

Definition 1,1.2 Let S and S’ be two sets. For a given rule g,if for any « € S, there
exists a certain corresponding 3€ S" by this rule, then ¢ is called a mapping from S to S’,
which could be denoted by 6:S—S’". The correspondence of « to B can be denoted by 6(a) =8.
3 is called the image of a with respect to g,and « is called the preimage of g with respect to o.
Correspondingly.the set S is called the domain of 5,and the set R(s) ={s(a)|a€ S} TS’ is

the range of 5. If for any a, ;a2 € S,a; #a. implies 6(a; ) #o(a; ) »then o is a injection. If for

1



Chapter 1 Introduction to Linear Algebra

any BE S, there exists a € S such that ¢(a) = or R(¢) = S’, then o is a surjection. If a
mapping o is a injection as well as a surjection, then ¢ is called a bijection. Particularly, when
S=S’,the mapping s is a transformation.

Next we shall see some examples.

Example 1. 1.1 Z is the set of all integers,and Z’ is the set of all even integers. We
define the following mapping

on) =2n (ne€ ).
Then o is a bijection from Z to Z'.

Example 1.1.2 Let K"*" be the set of all square matrices on the field of K with order

n. Given the following two mappings

c(A) =detA A€ K”), r(a) =al, (a€ K),
where ¢ is a mapping from K" to K, and r is also a mapping from K to K. From
Definition 1. 1. 2,05 is a surjection but not a injection,and r is a injection but not a surjection.

Example 1.1.3 We denote P[] as the set of all polynomials on the field K,and define

the following mapping by derivative

slf()] = f() {f) € P[t]}.
Then ¢ is a transformation in the set P[¢]. It is a surjection, but not a injection. If we denote
P[t], as the set of all polynomials with degrees less than n on the field K, then the
aforementioned ¢ is a transformation in the set P[¢],,and it is neither a surjection nor a
injection.

Given two mappings.we can define the equality and their product.

Definition 1.1.3 Let ¢, and 5, be two mappings from S to S’. If 5, (a) =0, (a) holds for
any a € S,then g, is equal to g, »denoted by 6, =0,. Let ¢ be a mapping from S to S” and 7 be
a mapping from S’ to S”. The product of ¢ and z,denoted by zs,is a mapping from S to S’
defined as the following

(zo)(a) = t[o(a)] (a € S).

The product of mappings is a generalization of the concept of composite functions.
However,not all mapping pairs have products. From Definition 1. 1. 3, the necessary and
sufficient condition that ¢ and r have a product is that the domain of r contains the range of .

For example, the two mappings ¢ and r defined in Example 1. 1. 2 have the products

(z6)(A) = ¢[6(A)] = r(det A) = (det A)I, (A € K™),

(o) (al,) =olr(a)] = g(al,) = det(al,) = a" (a € K).
7o is a transformation in K"*",and o7 is a transformation in K. This example also shows that
the product of two mappings is not communicative,i. e. ,zo7or. It is not difficult to prove
that the product is associative,i. e. , (wr)6=w(70) , where ¢ is a mapping from S to S,z is a

mapping from S’ to S”,and w is a mapping from S” to S”.
1.1.2 Definition of the linear space

The linear space is one of the basic concepts in linear algebra, which is a further



1.1 The linear space

abstraction and generalization of the n-dimensional real vector space. It has a well defined
addition and scalar multiplication operation satisfying some particular properties. The linear
space is a special algebraic system. In order to introduce its definition, we shall first
introduce some preliminary concepts.

Definition 1.1.4 Let V be a nonempty set. If there exists a operation “+” called the
addition such that for any u,v€ V,there exists a unique element in V correspondingly, which
is called the sum of u,v and denoted by u -+ wv. The addition operation should satisfy the
following laws:

@ Associate; utv=vt+u,¥Yu,vEV.

@ Communicative: (u+v) +tw=u+(v+w),YVu,v,w&V.

® There exists an element €V called “zero” such that u+60=u,for Yu€V.

@ For Y u€&V,there exists a unique element —« &V such that u+ (—wu)=0.

In this case,V is called a additive group under the addition,denoted by (V,+).

Example 1.1.4 Under the ordinary addition operation on real numbers, the sets of all
integers,rational numbers,real numbers,complex numbers are all additive groups, which are
denoted by (Z,+),(Q,+),(R,+),(C,+),respectively.

Example 1. 1. 5 With the natural multiplication operation on numbers, the set of all
nonzero rational numbers is an additive group,denoted by (Q\{0},+). Similarly, (R\{0},+),
(C\{0},+) are both additive groups,while (Z\{0},+) is not an additive group.

Definition 1. 1.5 Assuming that (V,+) is an additive group and K is a field,if for any
A€ K and vE€ V,there exists a unique element AvE€ V satisfying

@ Alutv)=AutAv,for VAEK, ,u,vEV,

@ QA+wu=rutpu,for YA,u€K,u€V.

@ A () =Qpu,for YA, u€K,u€V.

@ lu=u,u€eV.

Then V is called a linear space or vector space on the field K. Any element in V is called a
vector,and element in K is called a scalar.

Example 1.1.6 The geometry space (e. g. ,the line R,the planar R?,the 3-dimensional
space R*) is a linear space on the field R with respect to the natural addition for vectors.

More generally, let

V={x|x=(x1,22,,2,) 2, € Ryi =1,+,n},
and K=R. For any A€ R, y=(y,,3:,°**»y,) " ,we define x=ySz,=y, for i=1,2,+,n and
x+ty=(x;+y,xs+y2srx, +3y)7,
Ax = Az 44z 55Az,) ", 0= (0,0,++,007,

It is not difficult to verify that V is a linear space on R, which is called a #n-dimensional
real vector space,and denoted by R".

Example 1.1.7 The set K™ consisting of all m X n matrices on K is a linear space
according to the addition and scalar multiplication for matrices. K”*" is usually called the

matrix space.
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Example 1.1.8 The set P[¢], of all polynomials with degrees less than n+1 on a field
K is a linear space,according to the natural addition and multiplication for polynomials,which
is usually called the polynomial space.

Example 1.1.9 The set C[a.b] consisting of all the continuous real functions defined
in [a@,b] is a linear space, according to the natural addition and scalar multiplication for
functions.

A more complicated example is the following.

Example 1.1.10 Let AEC"",and W= {x€ C"|Ax=0}. It is not difficult to verify that
W is a linear space on the field C. In many occasions,W is alternatively called the null (or

kernel) space of A,and denoted by N(A).

1.1.3 Basis and dimension

We have known some properties of vectors in R” such as the linear combination, linear
dependence, linear independence and so on. For a general linear space, there are similar
concepts and properties.

Definition 1.1.6 Let V be a linear space over K,a;, €V (i=1,2,,n),a€ V. If there
exist numbers £, € K(i=1,2,++,n) such that

a=ka +ka +- -+ khka,,
then ¢ is called a linear combination of vectors a; (i=1,2, +,n),or @ can be linearly
represented by vectors @, (i=1,2,+-,n).

If there exist n» numbers 4, € K(i=1,2,+-,n) which are not all zeros such that

kia, + k.a, + -+ ka, =0,
then @, €V (i=1,2.---,n) are linear dependent. While,if the equation above holds if and only
if by, =k,=++=k,=0,thena, €V(i=1,2,++,n) are linear independent.

Definition 1. 1.7 Let V be a linear space over K,{@; @, ,***sa&,} and {B, .f.,**,B.} are
two vector sets in V. If for all i=1,2,++,r,@; is a linear combination of {f, ...+, B,},then
we say {@; »@;,**,@, | can be linearly represented by (B, ,B..,*,B.}. If conversely {B; ,B, .+,
PB.} can be linearly represented by {@, ,a:,** @&, },then the vector set {e, s, " @, } is called
equivalent to the vector set {B,, .-, B.}. If a vector set {a,, @, **,a,} has ¢ linear
independent vectors {g &, " ,& )€ {@ @+ @, ) and {@ @, ", @, } can be linearly
represented by {g, ,&,,***,& }.then we say the vector set {e, ,a; ,*** @, } has rank z,and {g, ,
€ " y& ) 1s a maximal linear independent vector set of {@ s@.s*" @, }. Denote rank{a, ,
st 5@, =L.

Definition 1. 1. 7 can be seen as a copy of the relevant concepts in R”. We should note
that the “addition” and “scalar multiplication” are replaced by the addition and multiplication
defined for V,and the “zero” is replaced by @, which is the zero element in V.

Many properties for vectors in R” still hold for the more general linear spaces. We list

some of them as the following.

4



1.1 The linear space

Conclusion 1. 1. 1 A single vector is linear dependent, if and only if it is the zero
element. A vectors set consisting of more than one element is linear dependent if and only if
there exists at least one vector that can be linearly represented by other vectors.

Conclusion 1.1.2 If @, ,@>. @, is linear independent,and @, ;@ ***. @, B is linear
dependent, then B can be uniquely linearly represented by @) sa: " s a@,.

Conclusion 1.1.3 Any two maximal linear independent vector sets of a fixed vector set
are equivalent.

Conclusion 1. 1.4 Equivalent vector sets have the same rank.

Example 1.1.11 In the linear space K™*",let E,; (i=1,2,+-,m;j=1,2,--+,n) be an

m X n matrix,of which the element lying in the i-th row and j-th column is 1,and the others

n
are zeros. Suppose that there exist numbers k; such that z Zk,,E,, = 0 ,it can be easily

i=1 j=1

deduced that k£, =0 for i=1,2,+*+,m,j=1,2,+-+,n. This shows that E; (i=1,2,+-,m;j=1,
2,+++,n) are linear independent. On the other hand,for any m X»n matrix A= (a, ), it can

be linearly represented by {E,; } from the fact that A= Z Ea,,E,,.

i=1 j=1

Example 1. 1. 12 In the linear space P[t], the polynomials 1,¢,¢°,++,t" are linear
independent. The reason relies on that if there exist numbers &, ,k, ,k;,+*,ky € K such that
ko +kit+kt? -+ kY =0,then the following equations hold

ki + 2kyt + - + Nkyt¥' = 0,
2k, 4=+ + N(N — DbtV =0,

Nlky = 0.

The unique solution of equations above are b, =k, =k, =+++=ky=0.

Definition 1. 1. 8 Let V be a linear space. If there exist n elements a,, @, ", @,
such that

@ @, sa> " s, are linear independent,

@ any element @ can be linearly represented by a; sa; s s @, »
then {a; ;& »***»a,} is called a basis of V,and n is called the dimension of V,denoted by dim
V. The linear space V with dimension 7 is called a n dimensional linear space,denoted by V",
which is also called a finite dimensional linear space. If for any given positive integer N, we
can always find N linear independent elements, then the space V is a infinite dimensional
linear space. If there exist no linear independent vectors,then the dimension of V is zero.

Let {a a;,***ya,} be a basis of V",then V" can be denoted by

V' = {ka +ka; + -+ ka, | kisksyoor k, € K},

which clearly depicts the structure of V”.

Example 1.1. 13 From Example 1. 1. 11, K™*" is an mn dimensional linear space, and
{E,; }(i=1,2,+,m;j=1,2,,n) is a basis.

Example 1.1.14 In P[¢],,any polynomial f(¢)=a, +a,t++++a,t" can be represented

5



Chapter 1 Introduction to Linear Algebra

by the linear independent polynomial set consisting of 1,z,+*+,2",which is a basis of P[t], and
P[t], is n+1 dimensional. From Example 1. 1. 12, P[¢] is an infinite dimensional linear
space.

From Definition 1. 1. 8, it can be proved that any vector set consisting of n linear
independent elements is a basis. That is to say,the basis of a linear space is not unique. For

instance, both of the following two sets of vectors are bases of the 4 dimensional space K***

E 1 0 - 0 1 E—(OO)E-<OO)
”_(o o)’ ”_(o o)’ 7\ o) 7" o 1/’

0 1 1 0 1 1 1 1
G]=( )9 Gz:( )9 G3:( )9 qu( ).
1 1 1 1 0 1 1 0

Throughout this chapter,we will mainly focus on finite dimensional spaces.

1.1.4 Coordinate

In the study on the analytic geometry, the coordinate is a very important tool, which
plays the same role as in a linear space.
Definition 1.1.9 Let V be an n dimensional linear space over a field K,and a, @, ",
@, be its basis. Then any element a can be uniquely linearly represented by @, ya, ,*** ,@, :
a=x0 t+txa+- - t+za, (x,x,,x2, € K).
Ty X3 5" s, is then called the coordinate of @ with respect to @, sa@;,*** ,@, ,denoted by (z,,
Tyt szt
Example 1. 1. 15 In the n dimensional linear space K”,we choose the following basis
e, = (1,0,+--,0),e;, = (0,1,++-,0),°*~,e, = (0,0,---,1).
Then the coordinate of vector b= (b, ,b, ,***,b,) with respect to the basis above is (b, yb, ,+*+,
b,)". While with respect to the following basis
a, = (1,0,+-,0),a, = (1,1,++,0),++,a, = (1,1,+-,1),
the coordinate of b is (b, —b, 6, —by =+ yb, 1 —b, +b,)".
Example 1.1.16 In the n+1 dimensional linear space P[¢],,with respect to the basis
1,¢,¢*,++,t",the coordinate of the polynomial f(z)=a,+a,t+++a,t" is (assa,s**sa,)".

2X2

Example 1. 1. 17 In the 4 dimensional linear space K**?, find the coordinates of the

matrix A= ( ) with respect to the following two bases

2 —3
1 0 0 1 0 0 0 0
En = (o 0)’ E. = (o o)’ En = (1 0)’ e = (0 1)' Wlade B3
c,:(o 1), czz(l O), (;3=(1 1), c,:(l 1). (1.1.2)
11 11 0o 1 1 0

Solution: Since A= 0E,, + 1E,; + 2E,, — 3E;, then the coordinate of A with respect to
equation(1.1.1) is (0,1,2,—3)". Assuming that
A = lel +.1'sz +IgGg +I4G4 ’



1.1 The linear space

the following linear equations hold

Vo) +13 +11 :Oq
X +13+I4 = l’
<
v g} ’+“Iz +I4 = 2v
x + x; +x3 =—3,
The solution to this equation is x; =0,2, = — 1,23 = —2,x, = 3. Thus the coordinate of A

with respect to equation(1.1.2) is (0,—1,—2,3)".

With the help of coordinates,not only the abstract element @ in V" can be connected to
the concrete vector (x;, x5+, x,)" in K", but also the abstract linear operations such as
“addition ”, “scalar product” in V" can be connected to the addition and scalar product
operations in K",

Let @) ,@; " »@, be a basis of V",and for any a,pc V"

a=xa +txrat+tza,, p=ya +ya -+ -+ yv.a,,
then
at+p=(x;, +yda +(x; +yda + -+ (z, + y)a.
ka = kx @, + kx,@, + - + kx,a,.
i. e. ,the coordinate of @+ is
(xy+y1sx Fy2o sz, +y.)7 = (x50, 52)" + (yisyasssy) s
and the coordinate of ka is
Ckxy skxg s sk, )" = k(xy 2y 02,07,
We can find that element in V" and the vector in K" have the following relationships
a—>(x x50 P (yiayesr,y )T,

atpo(x +yisx+yoox, +y)" kaek(x ,x,, 2,7
That is to say,V” and K" have the same structure,or V" and K" are isomorphic.

Correspondingly,results about the linear relations in V", such as linear dependent, linear
independent,rank,the maximal linear independent vector set and so on,can be deduced in K"
by using coordinates.

Example 1. 1. 18 Check that whether the polynomials in P[¢];.i.e. , f, (t) = —2¢ +
dt+ 1, f, () =2 — 32 +9t— 1, f3(t) =" +6t—5, f, (1) =2t —5¢# +7t+5 are linear
dependent or not.

Solution: Let the basis in P[¢]; be t*,¢*,¢,1. The coordinates of f, (£), f,(¢), f3(¢),
f1(2) are

a =1,—2,4,1)",a, = (2,—-3,9,—1",a, = (1,0,6, —5)",a, = (2, —5,7,5)".
It is not difficult to deduce that a,,a,,as,a, are linear dependent. Correspondingly, the
polynomials f1(2), f2(2), f3(2), f,(¢) are linear dependent.

Example 1. 1. 19 Find the rank and the maximal linear independent vector set of
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2 1 Loy 3 1 n 11
(2 a0 A= a1
‘ —1 3 ’ 2 0 ! 1 3 ! —3 3

Solution: We take the elements shown in equation (1. 1. 1) as a basis of K**7,
Coordinates of A, ,A,.A;,A, are
a = (2,1,—1,)",a, = (1,0,2,0 " ,@; = (3,1,1,3)",@, = (1,1, —3,3)7.

Thus the rank of @, s sa; @ is 2,and @, s@, consist the maximal linear independent vector

set. Also rank{A, ,A,,A;,A,})=2,and A, ,A, constitute the maximal linear independent set.

1.1.5 Transformations of bases and coordinates

In this subsection,we will review the relations between different bases and coordinates
of a certain vector with respect to different bases.
Definition 1.1.10 Let x,,2,,***.x, and y,,y,.***,y, be two bases in V,and
ay;
v = anx, + ot anx, = (xyp,x,x,) | 2|, 1= 1,,n.
Ay
We introduce the matrix denotation (y,,y;,**»y,) = (2,22, +2,)A, where A= (a,),«, €
F" A is called the transition matrix from z,,2, ., 2, 10 y1 32 s** s y,.
From the knowledge of linear equations, it is not difficult to see that A is invertible.
Therefore, () yx2 3+ s2,) =(y15y25*+»y,)A ',i. e. ;A ' is the transition matrix from y,,

Vose* sV, to &, ,x, 2T,

Let z€&V.,and x = ZE,I, = Zry,yn then
i=1 =1

& & m
T = (xi x93 | 1= (syessy) [AT = (3 |
& & 7

From the uniqueness of coordinate,we can deduce the following

(771 9'"’77,,)T — Ail(fl 9"'95,,)TQ

(El -"'vE,,)T = A("]l 9"'977,,)T.
The equation above reflects the transformation from the coordinate of z with respect to y, ,
Y255y, to the coordinate with respect to x, y5+*, z,.

Example 1.1.20 Given the following two bases of P[¢],

[ =4+ 282 —1u, g () =28+ +1,

fo () =0 —#+t+1, g W) ='+2t+2,

fa () =—F + 28 +1+1, g () =—2+*+t+2,
fi() =— —© 41, g () = +3t"+r+ 2,

find the transition matrix from f, (), f2 (), fs (2D, f. (£ to g, (2) g, (2) 283 (1), g, (D).

Solution: In order to simplify the computation, we select an intermediate basis #*,¢%,7, 1.
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The transition matrix from 2 .¢% 2,1 to f1 () s f2(2) s f5() s f1(0) is
1 I —1 =1
2 =1 2 —1
Fr(D s 25 f5 () s f1 (D)) = (£t o1, 1) 1 | . ol
0 1 1 1

and the transition matrix from 2% ,%.¢,1 to g, (¢) g2 (1), g: () 5 g, (1) is

2 0 —2 1
o 1 1 3

(g1 (1) g2 () gs (1) g (1)) = (£° 5% 51, D) 1 @ 1 1l
1 2 2 2

Then the transition matrix from £, (), f2 ()4 f5(0) s f1 (1) to g1 (1) g, (1), g2 (1), g, (1) is
(g1 () sg () gy (1) g (1)) =

1 1 —1 —1y'¢ 2 0 —2 1
& —1 2 —1 11 1 3
LD fo D D fiO) | 1 N I P 1=
0o 1 1 1 1 2 2 2
1 0 0 1
‘ 11 0 1
L@ fo o fs@ o fu |
00 1 0

which implies that the transition matrix from f, (¢), f> (). f5 (e f1 (2) to g1 (), g2 (£),
g:() g (1) is

1 0 0 1
1 1 0 1
0 1 1 of

\o 01 0

1.1.6 Subspace and the dimension theorem for vector spaces

We discuss subspaces of a linear space.

Definition 1. 1. 11 Let V be a linear space on the field K,and WV be a nonempty set.
If W is linear space with respect to the addition and scalar product operations defined for V,
then W is called a subspace of V.

Remark: The set {#} and V are two special subspace of V, which are called the trivial
subspace and false subspace,respectively. A subspace that is neither a trivial subspace nor a
false subspace is called the proper subspace.

To judge whether a nonempty subset is a subspace, we can directly use the definition of
the linear space. While,there exists a more convenient alternative method.

Theorem 1.1.1 A nonempty subset W of a linear space V over K is a linear subspace,if

9
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and only if the addition and scalar product operation defined in V is closed in W,i. e. .x+y€
W, kx €W ,for any x,yEW , k€ K.

Example 1. 1. 21  In R%, any line or plane containing the origin is a linear subspace
of R®.

Example 1.1.22 P[¢], is a linear subspace of P[¢].

Example 1. 1.23 Given a set of vectors x; ,x;,*,x, €V, the following set

W = Span{-r| 9"'9x,,} = {Z/‘,x, | A,‘ E F}QV
i=1

is a linear subspace of V,called the span of x, ,x;,,*,x,.
Proof Since x; €V ,W is nonempty. For any a.p€V
a=kx +kx,++kx,, B=Lx +Lx+ -+ 1lx,,
and s€ K ,it can be easily deduced that
a+p= (kb +s)x; + (kb +1)x, + -+ (b, +1)x, €W,
sp = (sk)x, + (sky)x, + o+ (sk)x, € W,
which implies that W is a linear subspace of V. [

From Example 1. 1. 23,we can obtain a method for generating linear subspaces.

Theorem 1.1.2 Let V be a linear space in the field K,and x, ,x;,***,x, be n elements of
V. We construct the following subset

W = {kix; +kyx, + -« +kx, | kiskss,k, € K},
then W is a linear subspace of V', which could be called the linear span of x,,x,,,x, and
denoted by span {x;,x;,**,x,}.

Theorem 1. 1. 2 implies that any finite dimensional linear space is a linear span of its
basis.

Example 1.1.24 Let AER""",and

N(A) = {xe R"|Ax =0}, RA) ={y€e R |y=Ax,x € R"},
then N(A),R(A) are both linear subspaces in R” and R™,respectively.

The linear subspaces in Example 1. 1. 24 are two important subsets related to a given
matrix A.

Definition 1.1.12 Let A€ K""",and a;(i=1,2,---,n) is the i-th column vector of A.
The linear subspace span{a,,a;,**,a,} is called the range or column space of A,denoted by
R(A). The set {x€ K"|Ax=0} is called the kernel or null space of A,denoted by N(A).
Similarly,suppose that b; (j =1,2,-,m) is the j-th row vector of A, the linear subspace
span{b, sb; ,*=*,b,} is called the row space of A,denoted by R(A"). The set {yE K" |ATy=0}
is called the left null space of A,denoted by N(A").

Remark: Alternative representations of R(A) and R(A") are

R(A) = {Ax | x € K"}, R(A") = {A"y |y €& K"}.
It is not difficult to prove that
dim R(A) = rank(A) = rank(A") = dim R(A"),

and N(A),N(A") are the solution spaces of the homogenous linear equations A x =0 and

10
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ATx= 0,respectively. Thus,
dim N(A) = n—rank(A) and dim N(A") = m — rank(A),
which implies the following well known theorem.
Theorem 1. 1. 3(Rank-nullity theorem) Let A€ K™*",then the following equations hold
dim N(A) = n—dim R(A) and dim N(A") = m —dim R(A").

The intersection and union operations for subspaces have the following properties.

Theorem 1.1.4 ILet V be a linear space on the field K,and V, and V, be two linear
subspaces,then V, 1V, is also a linear subspace of V.

Proof Since §€V, and 6€ V,,then €V, N V,,implying that V;, NV, is a nonempty
set. For any @, €V, NV, a,pEV, and e, pE V,. Since W, and W, are two linear
subspaces,a+BEV, and a+pEV,,i.e. ,a+pEV,NV,. Similarly,for any k€ K, ka €V, N
V.. Thus from Theorem 1.1.1,V, 1V, is a linear subspace of V. W

Remark: The union of two subspace is generally not a subspace.

Next we introduce the sum of subspaces.

Definition 1. 1. 13 Let V| and V, be two linear subspaces of the linear space V. The
following set

Vi+V,={ala=a ta.,a € V,,a, € V,}
is called the sum of V| and V,.

Example 1. 1. 25 In R’,V, and V, are two lines along the z axis and y axis,
respectively, which are subspaces of R*. Then V, 4V, is the plane consisting of the origin O,
x axis and y axis, which is obviously a subspace of R®.

The sum of subspaces satisfies the following theorem.

Theorem 1.1.5 Let V be a linear space over the field K,and V, and V, be two linear
subspaces,then V|, +V, is also a linear subspace of V.

Proof Since §=0+60c€V,+V,,V,+V, is a nonempty set. For any a,BEV,+V, and
k€ K,we can assume that

a=a +a, p=p +p (a..p € Vi,a:,p € V,).
Thus,
atp= (s +p)+(a: +p) €V, +V,, ka= (ka))+ (kp,) €V, +V,,
which implies that V, +V, is a linear subspace of V. I

Remark: From Theorem 1. 1. 4 and Theorem 1. 1. 5, besides the linear span, we can
generate new subspaces by using the intersection and sum operation on two existing
subspaces.

For the dimensions of intersections and sums of subspaces, we have the following
important theorem.

Theorem 1. 1. 6 (Dimension theorem) Let V be a linear space over the field K, and Vv,
and V, be two linear subspaces,then

dimV, +dimV, = dim(V, +V,) + dim(V, N V,).

Proof We assume that
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