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LIMITED MEMORY QUASI-NEWTON
METHOD FOR LARGE-SCALE LINEARLY
EQUALITY-CONSTRAINED MINIMIZATION"

NI QN (& %)

(Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
and

LSEC, Institute of Computational Mathematics, the Acadmey of Mathematics and Systems Sciences,
CAS, the Chiense Academy of Sciences, Beijing 100080, Chin.a.)

Abstract

In this paper, a new limited memory quasi-Newton method is proposed and developed
for solving large-scale linearly equality-constrained nonlinear programming problems. In every
iteration, a linear 2quation subproblem is solved by using the scaled conjugate gradient method.
A truncated solution of the subproblem is determined so that computation is decreased. The
technique of limited memory is used to update the approximated inverse Hessian matrix of the
Lagrangian function. Hence, the new method is able to handle large dense problems. The

convergence of the method is analyzed and numerical results are reported.

Key words. Limeted memory, quasi-Newton method, large-scale problem,
linearly equality-constrained optimization

1. Introduction

Consider the following linearly constrained nonlinear programming problem
min f(z),
s.t. Az = b, (1.1)

where z € R®, A € R™*™ and f € C?. We are interested in the case when n and m are
large and when the Hessian matrix of f is difficult to compute or is dense. It is assumed that
A is a matrix of full row rank and that the level set S(zy) = {z: f(z) < f(zo), Az = b} is
nonempty and compact.

In the past few years, there were two kinds of methods for solving the large-scale
problem (1.1). For the one kind, problem (1.1) is solved by using matrix factorization and
active set (see [1.2]). These methods are only suitable to large sparse problems. In addition,

Received June 11, 1998.
* This research is supported by the National Natural Science Foundation of China, LSEC Of CAS in Beijing
and Natural Science Foundation of Jiangsu Province.



(&)

No.3 Limited Memory Quasi-Newton Method 321

these methods require an initial feasible point. The optimality-condition based methods (see

A‘ZS.-L]_) belong to the other kind. According to the Kuhn-Tucker optimality condition, problem

(1.1) is transformed into an unconstrained minimization problem. An evident drawback 1is
that the objective function in the unconstrained problem includes the gradient of f(z) in
(1.1), which makes the problem somewhat complicated. Hence new methods. especially the
efficient codes. are demanded for solving large-scale dense and sparse linearly constrained
problems.

In this paper, a new method is proposed and developed for solving large-scale problem
{1.1), where the Hessian of f is dense or the second derivative is difficult to compute.
In every iteration. a linear equation subproblem is solved by using the scaled conjugate
gradient method. A truncated solution of the subproblem is determined so that computation
is descreased. With the technique of limited memory update. the Hessian matrix of the
Lagrangian function is computed and stored by means of some vectors. Hence the new
method is able to handle the dense and sparse large problems.

This paper is organized as follows. A limited memory quasi-Newton method is devel-
oped in Section 2. The global convergence is proved in Section 3 and some numerical tests
are given in Section 4.

2. Algorithm

The algorithm proposed generates a sequence {z}32, of iterates of the form
Th41 = T + ardi,

where d;. is a search direction and aj is determined by a line search along di. First the
search direction 1s discussed in the following.

2.1. Search Direction and Truncated Solution
Consider a sequence of quadratic programming subproblems that approximate the local
behavior of problem (1.1) at the current iterate z

min %dTBd+ v f(z)Td,
s.t.  Ad=—(Az —b), (2.1)

where d £ R™, B is a positive definite approximation of the Hessian matrix of the Lagrangian
function
Liz.u) = f(z) — uT(Az — b) 2.2)

with u £ R™. an approximation of the Lagrangian multiplier vector of (1.1).
In order to avoid finding a basis matrix for the null space of 4. consider a dual QP
subprobiem

s )
min au‘AHATu—;—c(z)Tu. (2.3)

where ¢(z) = Az —b— AH 7 f(z), H = B~!. Because A is of full row rank. H is positive
definite. u in (2.3) is determined by solving

AHATu = —¢(z). (2.4)

In order to soive the large-scale probiem. consider a truncated solution of linear equation

(2.4). If u satisfies

o~

|AHA v + e(z)|| < min {6,.62 |H(ATu — T f(z))] 62 ).
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then u is called a truncated soiution of (2.4). The choice of 4;,9» and 03 will be discussed
later. The truncated solution is obtained by soiving (2.4) with a scaling conjugate gradient
method. Then. an approximated solution of (2.1) is defined as d = —H (7 f(z) — ATu). For
a large-scale problem, the technique of limited memory update will be used to compute and

store H.

2.2 Limited Memory Update and Merit Function "
According to the results in [5], the inverse limited memory BFGS matrix Hj, is

: O [ RTT(D, = YTHOVORY —-B;T)[ Sk
He(l) = HO (5, Qv | 5 12k = Lx B He by o & (45)
) = BT B Hiehd | R 0 JLYFE,]
where
© Sk = Sk—z,"',sk—ﬂ, Yi = ‘:yk—l:"‘-yk—i]:
8§ = Tj41 — T, Vi = TllTis1,%5) — Val{2;5,%),
(Ru)i; = SE_jqailk—i—teg HIZL],
ks 0, otherwise,

Dy = diag [SE—lyk-la =43 ,SE_lyk—ﬂ-

H ’(‘0) is a diagonal positive definite initial matrix, [ is a given positive integer often less than
10 (see [6]). For the first few iterations, when k < [, we need only to replace | by k in the
formulae above.

The merit function is defined by the augmented Lagrangian approach

m

m 1 ) 5
& (z,v) = f(z) = Y _vi(alz —b;) + EZTJ'LG,}F?«‘ - b;)", (2.6)
7=1

j=1

where r; is the j-th penalty parameter and v; is also the approximated Lagrange multiplier,
j=1,---.m. vy, -, vy, are introduced such that the approximation of Lagrange multiplier

is efficiently updated.

2.3. Algorithm

A limited memory quasi-Newton algorithm is described below for solving linearly equality-
constrained problem.

Algorithm 2.1.

Step 0. Choose some starting values zg € R™, vg € R™, Hy € R™*™, a positive
definite diagonal matrix, rg € R™, where r§0) Z 1, =1 ,m.

Step 1. Determine a search direction.

1.1) Compute a truncated solution of (2.4) such that u, satisfies

NAHRATu + c(zi)|| < min {667 | Hu(ATu — 7 f(zi))|), 62, (2.7)

g : 1) of2) o3 o p o .
where the choice of 6,& '.8,7.6,” is refered to in the following remark.

1.2) Define a search direction (dj.u;; — vi) where

dr = —Hp (7 f(zi) — ATuy). (2.8)
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Step 2. Compute the penaity parameter vector ri.i. Set
, ik H I

(k)_ik) 2miu}” - v}? .
"-'T']‘- i ez T -Tr .;~, T -)? 1\2'9)
4 (Vf(ze) — Altue)* He(Ff (zx) — A ug)

y % k41

'k\ o N T
g © = min (1, )

Step 3. Perform a line search. A steplength ay is chosen such that

”.k-c—l)
i

= max (0’

or(a) < 0x(0) + paoy(0) (2.10)

where u € (0, %), and or(a) = @, (zk + adg, vk + a(ug — vk)) where ®.(z,v) is defined
by (2.6).

Step 4. Set Ti+1 = Tk + axdk, Vk+1 = Uk + ax(ux — vi). If termination conditions
are satisiied, then stop; otherwise, go to Step 3.

Step 5. Compute Hi4; by using the inverse limited memory BFGS matrix defined
by (2.5). In order to retain sty > 0, replace si by s}. Here

Sk = Tkt — Tk, sy = 0zx + (1 — 6)Hyys,
_{1 if a>0.2b,
1 0.86/(b—a), otherwise,

where a = sEyk, b = yf HxYk, Yk = VeLl(Tr+1,uk) — VzL(zk,uk), K =k + 1. Go to Step
1.

Remark. In Step 1.1, J}:’
obtained. d}f)”Hk(.-lTu — 7 f(z))|| ensures the getting of a high convergence rate (see
Theorem 4.4 in Section 3). In the implementation of Algorithm 2.1, o',(cl) and J}f) are chosen

as

is introduced such that a relatively exact solution is

et P
£ T (k=12 F T k1
In order to obtain the efficient descent property of the search direction. o‘}f’ is chosen such
that I
(3) ; i o o3
lug —velld < 26, Ak — bl Irllo0d <

(

Ery

«w
| —

(2.11)

| ; T 1 2
s — bl s~ vellodl® < —— g2,

where & = ||(ATur — 7 f(zx)) THe(ATue — 7 f(zi))||-

3. Convergence Analysis

In this section, the global convergence of Algorithm 2.1 will be discussec: First, the
descent property of the algorithm is shown in the following theoem, where the gradient of

@,-E_H (:L‘k, L‘k) 1S

- — AT _ ) . —
T onn) = (VI = AT = Realden =0)) (3.1)

with
g o ) (k+1)
Riy1 = diag(r; gies ARl
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.

Theorem 3.1. Let zx,uk, vk, Hr,dr and rip de the given iterates of Algorithm 2.1.

Then
7

- T di
Py (T Vi) (

1
& iy Bt (3.2
uk_vk> < — SR H 8.2)

| Proof. To simplify the notation. the iteration index & is dropped and k —1 is replaced

s by — in the proof. From Step 1.2 of Algorithm 2.1 we obtain that d and u satisfy
H™'d+vf(z) — ATu=0. (3.3)
Defining £ = —(Ad ~ Az — b). then Ad = —(£ - Az — b) and

. ,/' d N\
- 7P (z.v)" K )

W=
=-f(z)Td+~dT4T (v - R-(Az - b)) + (u —v)T(Az - b)
=dTH'd —uT4d + dTAv — dTATR. (Az —b) + (u —v)T(Az —b)  from (3.3)
=dTH'd+ (Az — b)TR.(Az — b) + 2(u — v) T (Az — b) + (u — v)TE + €TR.(Az — b).

From
ﬂ (Az — b)TR. (Az — b) + 2(u — v)T(Az — b)
| =||RY?(Az — b) + RZ*(u = )| = |RZY*(u - v)|]°
> — |RZY*(w = v)||” = (u — v)TRI (u — v)
¢ > - 2(9f(z) - ATWTH(v(z) - ATw) = —2dTH'd,

t

it follows that

-7 & (z,v)T (u f v) Z%dTH‘{d +(u—v)Te+ TR (Az —b)
11 .
254 H d— |lu — || [I§]l — [|4z — bl| | R+ 1| [I€]}-

From the previous definition of &, (2.7) and (2.8) we have
¢=—[Ad+ (Az - b)] = AHATu — AH ¥ f(z) — (Az — b)
and ||&]] < 5,(:3). This inequality, with (2.9) and (2.10), implies that

(I — vl + 14z = B IR=1) I < (1w — vl + 1A — b] | R 1) 57
<(2+ D91 - ATWTH(TF(=) - ATw)| = 2dTH

Hence, because of (3.4),

-7 & (z.v)7T < 4 ) > LaTp-14,

u—2 — 4

which 1s the desired result of the theorem. .
In order to prove the global convergence theorem of the algorithm. we require a similar
lemma to that in [7..



No.3 Limited Memory Quasi-Newton Method 325

Lemma 3.2. Let zi, us, vx, &, dr and ry de the given iterates of Algorithm 2.1. and

issume that
i) shere is a positive constant v; such that f.ifH,:ldk > ~i|dii]? for ail &,

1) {ze}, {de}, {ue}, {ve}, {Hx} are bounded.

Then for each n > 0, there exist a & with ||d¢i| < n and ;]R;i;g(uk - v,c)“ <n.

The proof of the lemma follows from Theorem 3.1 in this section and the proof of
Theorem 4.6 in {7].

Theorem 3.3. Let Z, Uk, Uk, Hi,de and ri be the given iterates of Algorithm 2.1
and assume that all assumptions of Lemma 3.2 hold. Then either Algorithm 2.1 terminates
with a Kuhn-Tucker pair (i1, 4¢) 10 a finite number of iterations. or any accumulation
point (z*.u") of the sequence {(xk._l, uk.)} is a Kuhn-Tucker pair of (1.1). Moreover. if the
oenalty parameter vector ri is bounded, then there exists an infinite subset S Z .V sucha
that :Li;%vk.,.l = u*, where :V is the set of natural numbers.

b

roof. Let (z*.u") be an accumulation point of {(:ck.,_l, uk)}. From Lemma 3.2 it
follows that there exists an infinite subset S C .V such that

im sp=az", im ux =u",
k€S, k—co k€S k—o0
vk=v', lim dk=d‘=0,
k€S, k—c0 kE€S.k—co
. —-1/2
lim {|R, . “(ur —we)|| = 0. ; 3.5
cedim R (e — v (3.5)

From Step 5 of Algorithm 2.1 we obtain that Hy is positive definite for all k. From (2.8)
it follows that 7f(z*) — ATu* = 0. With (2.7) and c(zx) = Azy — b — AHy 7 f(zi), we
obtain Az* = b. Hence. (z*, u") is a Kuhn-Tucker pair of (1.1).

From Step 0 and Step 2. we have

(o kD) o (kg
v 2 1 r; Zm.m<r;,(k—.—l) ‘r->,

which implies that r¥ > 1, j = 1.---,m, k= 0,1,2,---. If ry is bounded, it follows from
{3.3) that li{I;g’Uk = u". The theorem is proved.
S
In Algorithm 2.1, if Hg.) in Step 5 is computed by using the usual BFGS inverse
update, i.e.

T s .
. StSy; yi Hi: 1 '
Heoy = Hy + 2% (1—’2 y")— —— (sxuf = HouwsT),  k=0,12,---, (3.6)
35 Yk 3L Yk Sk Yk

then the superlinear convergence of the algorithm is obtained, which is discussed in the
following theorem.

Theorem 4.4. Let zy, ug, vx,dr be the given iterates generated by Algorithm 2.1.
and Hj be computed according to (3.6). Assume that

" B Ty
(1) the sequence {zi} converges to =*, where z; = ( ),

U

(ii) the steplength ay is the one when k > &y for a sufficiently large ko,

(i) lim =t g
! h—ce  NEmer—zil ’
Then NE(
lim JI’ xlc-rl:uk.)“ =, _ (3.7)
k—oo ||zg41 — = \
- Ik & B
where E(z,u) = [_T/xL(:z:.u),ulgl(x),uggg(:z:),~-'.umgm(I)] (91(=), - gm(@) = Az

b.
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Proof. According to the definition, we have
m

|E(zks1: k)| < || Vo L@t wa)|| + T}ng"gﬁ'xkﬂ)l-

A
i=1

From (2.7) and (2.8), it follows that for k > kg
lg(zis1)|| = llg(zi) + Adi|l = || A Hi AT ui + (k)|
<62 Ndell = 8 lzkrs — zicll = 0 (flzksr — zll),
which implies that
1B(zkerui)|| < || Vo Lizies, wn) || = m fukfloo||g(zhet) | o

<|| Vo L(zkrt, wi)|| + m lJuklleoo (|zre1 — zill)-

In view of the assumption (iii), (3.7) holds.

The superlinear convergence is easily obtained from Theorem 4.4 and some theorems in
[8]. It is noted that Algorithm 2.1 does not possess the property of superlinear convergence.
because the limited memory update is used in the algorithm. However, the result in Theorem
4.4 is a main motivation of the choice of the termination criteria in (2.7).

4. Numerical Tests

Some numerical results of Algorithm 2.1 are reported and discussed in this section.
Computations are carried out on an SGI Indigo R4000 XS workstation. All codes are
written in FORTRAN with double precision. In all runs. we choose | = 5 in (2.5) and the
following termination condition:

lAz — bl <107, || V= L(z,u)||, < 107%. (4.1)
First consider the following class of problems:
P
min Y o((Hz - c)s),
1=1

st. Az =0b,

(4.2)

where A € R™**, H € RP*" b€ R", c € RP, p=2n, m=n/2, o(t) = log (cosh (t)) and
n is an even number. The mathematical model (4.2) is often used to find robust estimators
of the parameters. In a way similar to that in [4]. the data of (4.2) are chosen according to
the following definition:

a) Let A = (;aij). a;; = (1 —j)/’n. H= (hzj) h.,‘j = (71— 3])/(1 + 37

b) Compute a random “solution” z* such that z* € (—10,10), i =

c) Let b= Az™.

d) Let¢® = Hz" and ¢; = ¢ (1+r;pert), 1 = 1,2,---,n, where pert € (0, 1) represents
a percental perturbation on the vector c*. and r; is random between —1 and 1.

Algorithm 2.1 is used to solve problem (4.2) where n and pert are chosen as different
values. The numerical results are shown in Table 1. where

1.2, ,m.

ITER.: Number of iterations.

NF: Number of objective function evaluations.
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NDF: Number of gradient evaiuations,
VISUNM: Sum of constraint violations (see (4.1)),

DLAG: Norm of the gradient of Lagrangian function (see (4.1)).

Table 1. Numerical Results of (4.2)

N pert [TER NF NDF VISUM DLAG

20 0.0 3 30 40 3.40D—-9 2.45D-5
0.1 46 32 47 2.453D—-11 3.87D—4
0.2 51 75 52 7.31D-10 2.41D-5
0.3 37 91 33 8.837TD—9 7.85D-5
0.4 38 35 582 5.39D—10 1.27D—4
0.5 53 93 56 +.12D-3 8.97D—+¢
30 0.0 53 102 o4 2.47D-3 7.534D-5
0.1 71 114 2 3.36D—T7 6.39D—5

0.2 68 109 69 3.48D—6 3.40D—-5
0.3 38 98 39 2.17D-3 1.26D—5
0.4 7 98 79 3.60D—7 6.42D—4
0.5 90 130 91 7.40D-7 3.30D—4
120 0.0 112 156 113 5.73D—-T7 2.36D—4
0.1 105 147 106 2.30D-6 8.10D—-5
0.2 98 133 99 3.531D—-7 3.45D—4
0.3 132 178 133 3.62D—38 2.37TD—4
0.4 120 180 121 8.15D—7 3.45D-5
0.5 90 47 o1 4.25D—6 8.35D-5

The numerical resuits show that these problems are successfully solved by Algorithm
2.1. The termination condition is satisfied within 150 iterations.

In order to evaluate the algorithm performance further, consider the following test
problem

. ) l n.7—l.
min f(z) = o T (z7j+1 — 10)° + 5(z7j42 — 12)° —4x$j+3
nrt =
+ 3(@rj4a — 11)% + 1028, 5 + 723, 6 + T7j47) (4.3)
4, 0 0
0 Ao 0
S.T r==5b
0 B sen Ay
where A; € R3*7, j=1,2,---,n7, 4 = ds = --- = A, and 4; = (aw),aik =i —k, i =
1,2,3: k=1,---,7, bis generated in the same way as above. f(=) in (4.3) is a modification

rd
1

of the objective function of the 100-th problem in.[7]. Numerical results of (4.3) are shown
in Table 2.

Table 2. Numerical Results of (4.3)

N M ITER NF NDF VISUM DLAG

14 B 25 36 26 1.37D—-6  3.62D-5
28 12 34 73 35 3.38D—-7 3.74D-5
36 24 49 25 30 6.32D—6  5.33D—4
112 48 120 190 121 7.10D-8 4.82D-5

224 96 98 203 29 3.38D—-6  3.22D—4
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in Table 2. the number of variables n is chosen from 14 to 224, and the number of
constraints m from 6 to 26. The results show that these test problems are also successtully
soived by Algorithm 2.1.

These resuits indicate that Algorithm 2.1 can handle medium-scale linearly equality-
constrained problems. Hence. it can be believed that with further development. Algorithm
2.1 is capable of processing large-scale lineariy constrained problems. In addition. Algo-
rithm 2.1 will be extended to solving large-scale linearly equality and inequality constrained
problems. In this case. ATHA in the subproblem is in general not positive definite. This
will be further researched.
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TWO ALGORITHMS FOR SYMMETRIC LINEAR
SYSTEMS WITH MULTIPLE RIGHT—HAND SIDES’

Dai Hua (%)

Abstract In this paper, we investigate the block Lanczos algorithm for solving large sparse
symmetric linear systems with multiple right —hand sides, and show how to incorporate deflation
to drop converged linear systems using a natural convergence criterion, and present an adaptive
block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES
method for iterative solution of symmetric linear systems, and describe important implementation
details. We establish a relationship between the block Lanczos algorithm and block MINRES al-
gorithm, and compare the numerical performance of the Lanczos algorithm and MINRES
method for symmetric linear systems applied to a sequence of right-hand sides with that of the
block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneous-
Iy.

Key words  Symmetric matrices, multiple linear systems, block Lanczos algorithm, block MIN-
RES method.
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1 Introduction

In many applications we need to solve multiple systems of linear equations
A-rﬁ)=b(i)y i1 =1, **, s (1)
with the same n X n real symmetric coefficient matrix A, but s different right-hand sides

b (i=1, =+, s). If all of the right-hand sides are available simultaneously, then these s
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linear systems can be summarized in block form as follows.

AX =B (2)
where X=[z®, =+, 2] and B=[6V, -+, 6“’]. If the order n of the matrix A is small,
we can solve (2) using direct methods, first decompose the coefficient matrix A into sim-
pler factors at a cost of O(»®) operations and then solve for each right-hand side at a cost
of O(n*). Direct methods can also be advantageous if the right-hand sides are not all si-
multaneously available. However, for n large direct methods can be prohibitively expen-
sive both in terms of memory and computational cost, and so iterative methods become ap-
pealing. We will assume that the order n of A is sufficiently large and it is possible to keep
only a limited number of dimension—7 vectors in memory and all of the right-hand sides
are available simultaneously and s< 7.

Most of iterative methods are tailored to the solution of linear systems with a single
right-hand side. They could be trivially used to solve multiple right-hand problems (2) by
simply solving the s linear systems (1) individually. The Lanczos algorithms proposed by
Parlett[15] and extended by Saad[16], van der Vorst[21], Papadrakakis and Smerou[14]
are mostly suitable when all %’ are not simultaneously available. Reference[14] is of par-
ticular interest as it contains numerical experiments from actual applications. However, it
can be significantly more efficient to apply block variants of the iterative methods that gen-
erate iterates for all the multiple linear systems simultaneously.

In the block approach, one extends an iterative method for single to multiple systems,
by devising a block version which is applied to the block formulation (2) of multiple linear
svstems (1). The approximate solutions that are generated by a block method for the s dif-
ferent right-hand sides will generally converge at different stages of the block iteration.
An efficient block method needs to be able to detect and adaptively deflate converged sys-
tems. O’Leary[11] was the first to devise the block conjugate gradient method and the
block Lanczos algorithm for multiple symmetric linear systems, which are closely related
to the conjugate gradient method[8], the classical Lanczos method[9] and the block Lanc-
zos process [3, 7). However, the algorithms in [11, 12] can not handle deflations or vari-
able block sizes. For multiple symmetric positive definite systems, Sadkane and Vital[18]
proposed the block Davidson method, Calvetti and Reichel [1] devised an adaptive
Richardson iteration method. Nikishin and Yeremin [10] presented also a block version of
the conjugate gradient algorithm that allows varying block sizes. The literature for non-
symmetric linear systems with multiple right-hand sides is vast[17]. Some methods that
have been proposed are block generalizations of solvers for nonsymmetric linear systems:
the block biconjugate gradient algorithm[11, 20], block GMRES[22, 2], hybrid GMRES
[19] and block QMR method[6]. Although the block methods for multiple nonsymmetric
systems could be directly used to solve multiple symmetric systems, they can not make full
use of the symmetry of the matrix A.



Two algorithms for symmetric linear systems

In this paper, we investigate the block Lanczos algorithm (referred to as BLanczos
hereafter) for multiple symmetric linear systems (2), and consider its deflation procedure.
Using a natural convergence criterion, we can identify and drop linear systems whose solu-
tions can be recovered from the solution of the remaining multiple linear systems. In order
to smooth the possibly erratic behavior of the residual norm curve generated by the appli-
cation of the BLanczos algorithm to multiple systems (2), we describe a block version of
Paige and Saunders’ MINRES method[13] for the iterative solution of symmetric linear
systems with a single right-hand side. The MINRES iterates are defined by a minimization
of the residual norm, which leads to smooth convergence behavior. The block MINRES
algorithm (referred to as BMINRES hereafter) is an extension of MINRES to multiple
symmetric linear systems. The BMINRES iterates are then determined via a block smooth-
ing residual technique, which can be formulated as a matrix least-squares problem. In or-
der to deflate the converged block iterates, we restart the algorithm with new full rank
bases.

The structure of the paper is as follows. In section 2 we briefly review the block
Lanczos process, and then discuss the deflation of the BLanczos algorithm for multiple
symmetric linear systems, and present an adaptive BLanczos algorithm which allows vary-
ing block sizes. In section 3 we describe the BMINRES algorithm and show how it is af-
fected by detlation, and give some implementation details for the BMINRES algorithm. In
section 4 we discuss the relation between the BLanczos and the BMINRES algorithms. In
section 5 we compare the numerical performance of the Lanczos algorithm and MINRES
method for symmetric linear systems applied to a sequence of right-hand sides with that of
the BLanczos and BMINRES algorithms for multiple linear systems simultaneously and
give results of numerical experiments. Finally, conclusions are presented in section 6.

The following notation will be used. ||. ||, denotes the Euclidean vector norm or in-
duced spectral norm, and | . ||  the Frobenius matrix norm. I, is the identity matrix of
order n. E,=[0, ++, 0,1,, 0, -»=, 0]7 with I, at the ith block position; the total size of Z,

will bevmade clear from the context.
2 The block Lanczos algorithm

We briefly review the block Lanczos process. For R,ER"*", let R,=Q,T, be a QR

**"is upper-triangular. The

factorization of R,, i.e. , @, €R"*"is orthonormal and T, € R
block Lanczos process generates a sequence of orthogonal mutually matrices @, ER"**, %
=1, 2, -, l. e. ’
I, j=rt
QQ, = )
0, j*=k

that satisfy a three—term recursion relation
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Ql+1Ti+l == AQ. - Q“\'IE - Q._lﬂ’ k > 1 (3)
where Q,=0, and M,, T,ER**". Define
K,(A, R,) = span{R,, AR,, *-, AR 4)

K,(A, R,) is referred to as the £th block Krylov subspace. The block Lanczos process con-
structs an orthonormal basis for the block Krylov subspace Kj(4, R,). This can be accom-
plished by using the following algorithm.

Algorithm 2.1 (Block Lanczos process)

1). Compute the QR factorization of R,:

R, =QT,
where Q, €R"**is orthonormal and T, €R** *is upper-triangular, and
|
M, = QfAQx

2). For j=1, =, %, do
2.1). Compute P, =AQ,—Q;M;—Q,_,T; (Q,=0)
2.2). Compute QR factorization of P,
P =Qu Ty
where Q,., €R"*"is orthonormal and T, € R"*"is upper-triangular.

2. 3). Compute

j+1
T /
M, = Q1 AQ;4,
end do.
The matrices M;, T, are uniquely determined if the diagonal elements of the T, gener-
ated by Algorithm 2.1 are positive. We now assume this to be the case. We will consider

the case of a rank deficiency of P, later. Let

Q.i = [:Qly "ty Q.] (5)
M, TZT
T, M, T
T - .
T, = £ (6)
. s ’1"""
T. M,
The three-term recursion relation (3) can be written in matrix form as
‘{QA! - Qn Tﬁ =+ Pa—e—xE‘[ - Qﬁ Tﬁ =+ Qb+1Tﬁ+1EAT 7

where Q,€R"** is orthonormal, T,=QF A Q,€ R*** is an orthogonal projection of A
onto the block Krylov subspace K;(A4, R,), and is a symmetric band matrix with the band
width 2541.

In the BLanczos algorithm the goal is to solve the multiple symmetric linear systems

(2). Giving a block of initial guesses z,”” (=1, ,5), we define R, the block of initial



