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Preface

This book is composed of two parts: Part I (Chaps. | through 3) is an introduction to
tensors and their physical applications, and Part II (Chaps. 4 through 6) introduces
group theory and intertwines it with the earlier material. Both parts are written at the
advanced-undergraduate/beginning-graduate level, although in the course of Part 11
the sophistication level rises somewhat. Though the two parts differ somewhat in
flavor, I have aimed in both to fill a (perceived) gap in the literature by connecting
the component formalisms prevalent in physics calculations to the abstract but more
conceptual formulations found in the math literature. My firm belief is that we need
to see tensors and groups in coordinates to get a sense of how they work, but also
need an abstract formulation to understand their essential nature and organize our
thinking about them.

My original motivation for the book was to demystify tensors and provide a uni-
fied framework for understanding them in all the different contexts in which they
arise in physics. The word tensor is ubiquitous in physics (stress tensor, moment-
of-inertia tensor, field tensor, metric tensor, tensor product, etc.) and yet tensors are
rarely defined carefully, and the definition usually has to do with transformation
properties, making it difficult to get a feel for what these objects are. Furthermore,
physics texts at the beginning graduate level usually only deal with tensors in their
component form, so students wonder what the difference is between a second rank
tensor and a matrix, and why new, enigmatic terminology is introduced for some-
thing they have already seen. All of this produces a lingering unease, which I believe
can be alleviated by formulating tensors in a more abstract but conceptually much
clearer way. This coordinate-free formulation is standard in the mathematical liter-
ature on differential geometry and in physics texts on General Relativity, but as far
as I can tell is not accessible to undergraduates or beginning graduate students in
physics who just want to learn what a tensor is without dealing with the full ma-
chinery of tensor analysis on manifolds.

The irony of this situation is that a proper understanding of tensors does not
require much more mathematics than what you likely encountered as an undergrad-
uate. In Chap. 2 I introduce this additional mathematics, which is just an extension
of the linear algebra you probably saw in your lower-division coursework. This ma-
terial sets the stage for tensors, and hopefully also illuminates some of the more
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viii Preface

enigmatic objects from quantum mechanics and relativity, such as bras and kets,
covariant and contravariant components of vectors, and spherical harmonics. After
laying the necessary linear algebraic foundations, we give in Chap. 3 the modern
(component-free) definition of tensors, all the while keeping contact with the coor-
dinate and matrix representations of tensors and their transformation laws. Applica-
tions in classical and quantum physics follow.

In Part II of the book I introduce group theory and its physical applications, which
is a beautiful subject in its own right and also a nice application of the material in
Part 1. There are many good books on the market for group theory and physics (see
the references), so rather than be exhaustive I have just attempted to present those
aspects of the subject most essential for upper-division and graduate-level physics
courses. In Chap. 4 I introduce abstract groups, but quickly illustrate that concept
with myriad examples from physics. After all, there would be little point in making
such an abstract definition if it did not subsume many cases of interest! We then
introduce Lie groups and their associated Lie algebras, making precise the nature of
the symmetry ‘generators’ that are so central in quantum mechanics. Much time is
also spent on the groups of rotations and Lorentz transformations, since these are so
ubiquitous in physics.

In Chap. 5 I introduce representation theory, which is a mathematical formaliza-
tion of what we mean by the ‘transformation properties’ of an object. This subject
sews together the material from Chaps. 3 and 4, and is one of the most important
applications of tensors, at least for physicists. Chapter 6 then applies and extends
the results of Chap. 5 to a few specific topics: the perennially mysterious ‘spheri-
cal’ tensors, the Wigner—Eckart theorem, and Dirac bilinears. The presentation of
these later topics is admittedly somewhat abstract, but I believe that the mathemati-
cally precise treatment yields insights and connections not usually found in the usual
physicist’s treatment of the subjects.

This text aims (perhaps naively!) to be simultaneously intuitive and rigorous.
Thus, although much of the language (especially in the examples) is informal, al-
most all the definitions given are precise and are the same as one would find in
a pure math text. This may put you off if you feel less mathematically inclined; I
hope, however, that you will work through your discomfort and develop the neces-
sary mathematical sophistication, as the results will be well worth it. Furthermore,
if you can work your way through the text (or at least most of Chap. 5), you will be
well prepared to tackle graduate math texts in related areas.

As for prerequisites, it is assumed that you have been through the usual under-
graduate physics curriculum, including a “mathematical methods for physicists™
course (with at least a cursory treatment of vectors and matrices), as well as the
standard upper-division courses in classical mechanics, quantum mechanics, and
relativity. Any undergraduate versed in those topics, as well as any graduate stu-
dent in physics, should be able to read this text. To undergraduates who are eager to
learn about tensors but have not yet completed the standard curriculum, I apologize;
many of the examples and practically all of the motivation for the text come from
those courses, and to assume no knowledge of those topics would preclude discus-
sion of the many applications that motivated me to write this book in the first place.
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However, if you are motivated and willing to consult the references, you could cer-
tainly work through this text, and would no doubt be in excellent shape for those
upper-division courses once you take them.

Exercises and problems are included in the text, with exercises occurring within
the chapters and problems occurring at the end of each chapter. The exercises in
particular should be done as they arise, or at least carefully considered, as they often
flesh out the text and provide essential practice in using the definitions. Very few of
the exercises are computationally intensive, and many of them can be done in a few
lines. They are designed primarily to test your conceptual understanding and help
you internalize the subject. Please do not ignore them!

Besides the aforementioned prerequisites I have also indulged in the use of some
very basic mathematical shorthand for brevity’s sake; a guide is below. Also, be
aware that for simplicity’s sake I have set all physical constants such as ¢ and A
equal to 1. Enjoy!

Berkeley, USA Nadir Jeevanjee
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Notation

Some Mathematical Shorthand

R

n <™ n N 0

~ |l
o
i
™

car—>b

o

A X B

C"

{A]Q}

The set of real numbers

The set of complex numbers

The set of positive and negative integers

“is an element of’, “an element of™, i.e. 2 € R reads “2 is an
element of the real numbers”

“is not an element of”

“for all”

“is a subset of”, “a subset of”

Denotes a definition

Denotes a map f that takes elements of the set A into
elements of the set B

Indicates that the map f sends the element a to the element b
Denotes a composition of maps, i.e. if f : A — B and
g:B— C,thengo f: A— C is given by

(go flla)=g(f(a))

The set {(a, b)} of all ordered pairs where a € A, b € B.
Referred to as the cartesian product of sets A and B.
Extends in the obvious way to n-fold products A} x --- x A,
Rx---xR

- _~ =

n times

Cx---xC
—————

ntimes
Denotes a set A subject to condition Q. For instance, the set

of all even integers can be written as {x e R | x/2 € Z}
Denotes the end of a proof or example
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Dirac Dictionary’

Standard Notation  Dirac Notation

Vector ¥ € H [¥)
Dual Vector L(¥) (Y|
Inner Product (¢, ¢) (¥|¢)
AWWY), AeL(H) AlY)

(V. A®) (VIAlp)
Tie ®e; > Tl Gl
ei®e; 1i)17) or li. j)

'We summarize here all of the translations given in the text between quantum-mechanical Dirac
notation and standard mathematical notation.
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Chapter 1
A Quick Introduction to Tensors

The reason tensors are introduced in a somewhat ad-hoc manner in most physics
courses is twofold: first, a detailed and proper understanding of tensors requires
mathematics that is slightly more abstract than the standard linear algebra and vec-
tor calculus that physics students use everyday. Second, students do not necessarily
need such an understanding to be able to manipulate tensors and solve problems
with them. The drawback, of course, is that many students feel uneasy whenever
tensors are discussed, and they find that they can use tensors for computation but
do not have an intuitive feel for what they are doing. One of the primary aims of
this book is to alleviate those feelings. Doing that, however, requires a modest in-
vestment (about 30 pages) in some abstract linear algebra, so before diving into the
details we will begin with a rough overview of what a tensor is, which hopefully
will whet your appetite and tide you over until we can discuss tensors in full detail
in Chap. 3.

Many older books define a tensor as a collection of objects which carry indices
and which ‘transform’ in a particular way specified by those indices. Unfortunately,
this definition usually does not yield much insight into what a tensor is. One of the
main purposes of the present text is to promulgate the more modern definition of
a tensor, which is equivalent to the old one but is more conceptual and is in fact
already standard in the mathematics literature. This definition takes a tensor to be a
Sfunction which eats a certain number of vectors (known as the rank r of the tensor)
and produces a number. The distinguishing characteristic of a tensor is a special
property called multilinearity, which means that it must be linear in each of its r
arguments (recall that linearity for a function with a single argument just means
that T (v + cw) = T (v) + ¢T (w) for all vectors v and w and numbers c¢). As we
will explain in a moment, this multilinearity enables us to express the value of the
function on an arbitrary set of r vectors in terms of the values of the function on
r basis vectors like X, y, and z. These values of the function on basis vectors are
nothing but the familiar components of the tensor, which in older treatments are
usually introduced first as part of the definition of the tensor.

To make this concrete, consider a rank 2 tensor T, whose job it is to eat two
vectors v and w and produce a number which we will denote as T (v, w). For such
a tensor, multilinearity means

N. Jeevanjee, An Introduction to Tensors and Group Theory for Physicists, 3
DOI 10.1007/978-0-8176-4715-5_1. © Springer Science+Business Media, LLC 2011



4 1 A Quick Introduction to Tensors

T (v +cva, w) =T (v, w)+cT (v2, w) (1.1)
T, wi +cwz) =T, wy) +cT (v, wr) (1.2)
for any number ¢ and all vectors v and w. This means that if we have a coordinate
basis for our vector space, say X, y and z, then T is determined entirely by its values
on the basis vectors, as follows: first, expand v and w in the coordinate basis as
V=X + 0§ + V2
w=w,X+ w,y + w,Z.
Then by (1.1) and (1.2) we have
T (v, w) = T (vxX+ vy¥ + V;Z, weX + wy§ + w2)
= U, T (X, weX + wyy + w,Z) + vy T(§, weX + wyy + w,Z)
+ 0 T(Z, wxX + wy§ + w,Z)
= 0w T(X, X) + vywy TX, §) + vxw, T(X, 2) + vyw, T(§, %)
+vywy T (., ¥) + vyw, T (§,2) + v,w, T (2, X) + v,w, T (Z,¥)
+ v,w, T (Z,2).
If we then abbreviate our notation as
Ty =T (X, %)
Ty=T(KXY) (1.3)
Ty =T(,%)

and so on, we have

T(v,w) =Wy Texy + VxwyTyy + Vw; Tez + vVywy Tyy +vywy Ty
+ vyw Ty + v wx Tox + v,wy Ty + v,w, Ty, (1.4)

which may look familiar from discussion of tensors in the physics literature. In that
literature, the above equation is often part of the definition of a second rank tensor;
here, though, we see that its form is really just a consequence of multilinearity.
Another advantage of our approach is that the components {Tyy, Tyy, Ty;, ...} of
T have a meaning beyond that of just being coefficients that appear in expressions
like (1.4); from (1.3), we see that components are the values of the tensor when
evaluated on a given set of basis vectors. This fact is crucial in getting a feel for
tensors and what they mean.

Another nice feature of our definition of a tensor is that it allows us to derive
the tensor transformation laws which historically were taken as the definition of a
tensor. Say we switch to a new set of basis vectors {X, ¥, 2’} which are related to
the old basis vectors by

X =Av X+ Ay ¥+ Ay i
"= Ay X+ Ay Y+ Ay2 (1.5)
= Az’xf‘ + Az"vs' + Az’zi-

-«
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