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Meso-Mechanical Analysis of 3D Braided Composites Based on a Finite Element Model

Xu Kun and Xu Xiwu
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, People’s Republic of China

Abstract: As for 3D 4-directional rectangular braided composites, a 3-Dimensional (3D) Finite Element Model
(FEM) based on a Representative Volume Element (RVE) is established under the periodical displacement
boundary conditions, which truly simulates the spatial configuration of the braiding yarns. The FE software
ABAQUS is adopted to study the mechanical properties of the composites, including the effective elastic
properties and the meso-scale mechanical behaviors. The effects of the braiding angle and the fiber-volume
fraction on the engineering elastic constants have been investigated in detail. The predicted effective elastic
properties are in good agreement with the available experimental data, demonstrating the applicability of the
FEM. By analyzing the stress distribution and deformation of the model, it is proved that the RVE-based FEM
can obtain reasonable stress field and successfully represent the meso-scale mechanical behaviors of 3D
braided composites containing periodical structures.

Key words: Braided composites, finite element model, effective elastic properties, stress distribution, unit cell

INTRODUCTION

Three-Dimensional (3D) braided composites have
been attractive for industrial applications because of their
excellent mechanical performances, such as better out-of
planc stiffness, strength and high imipact resistance, etc,
compared with the fiber-reinforced laminated composites.
However, due to their complicated architectures and
anisotropic nature, it is difficult to predict the mechanical
properties of 3D braided composites.

To make full use of 3D braided composites, many
models have been developed to analyze the
microstructure (Li ef al., 1990; Du and Ko, 1993; Wang
and Wang, 1994; Pandey and Hahn, 1996; Chen et al.,
1999) and the mechanical properties (Ma et al., 1984,
1986; Sun and Sun, 2004; Sun and Qiao, 1997; Gu, 2004;
Lei et al, 1992; Sun et al., 2003; Zeng et al., 2004,
Tang and Postle, 2002; Chen et al., 1999; Yu and Cui,
2007). Ma et al. (1984, 1986) studied the effective elastic
properties of 3D braided composites by using the ‘Fiber
interlock model’ based on the maximum strain energy
principle and the ‘Fiber inclination model’ based on the
modified laminate theory. Wang and Wang adopted a
mixed volume averaging technique
mechanical properties of 3D braided composites. Sun
and Sun (2004) reported a volume-average-compliance
method to calculate the elastic constants. Sun and Qiao
(1997) studied the tensile strength based on the modified

to predict the

classical laminate theory. Gu (2004) presented an
analytical model to predict the uniaxial tensile strength
based on the strain energy conservation law. Lei et al.
(1992) adopted a 3D truss finite element technique to
analyze the mechanical properties of 3D braided
composites. Recently, two new prediction models based
on finite element procedures (Sun ef al., 2003; Zeng et al.,
2001) were developed to evaluate the elastic performance
of 3D braided composites. Tang and Postle (2002)
analyzed the nonlinear deformation of 3D braided
composites by the finite element method. Chen et al.
(1999) proposed a finite multiphase element method to
predict the effective elastic properties. Yu and Cui (2007)
developed a two-scale method to predict the mechanics
parameters of 3D braided composites.

Although these analytical and computational models
have contributed to an enhanced understanding of the
mechanical properties of 3D braided composites, the
models have their own limitations. For example, simple
architectures considered in the analytical models
(Ma et al.. 1984, 1986; Sun and Sun, 2004; Sun and Qiao,
1997) have great difference with the truly geometrical
microstructure  of 3D braided composites. As the
analytical models based on the laminate theory have
inherent limitations in geometrical modeling, they are
mainly devoted to predicting the global stiffness
properties of 3D braided composites. Further, the
computational models based on finite element methods
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(Lei et al., 1992; Sun et al., 2003; Zeng et al., 2004;
Tang and Postle, 2002) also considered the architectures
of the composites to be too simplified and the uniform
strain boundary conditions were applied in the periodical
unit cell model (Chen et al., 1999), which made it difficult
to obtain an accurate local stress distribution of 3D
braided composites.

In order to predict the mcchanical properties of 3D
braided composites, it is necessary to establish a model
for obtaining the accurate stress distribution of 3D
braided composites. However, there are few literatures on
predicting the local stress distribution and deformation of
3D braided composites, which is important to accurately
predict their mechanical properties. Compared with the
analytical models based on the laminate theory, 3D meso-
mechanical finite element methods can contribute to truly
model the microstructure of 3D braided composites. The
main objective of the present work is to develop a new 3D
finite element model for obtaining the stress distribution
and effective elastic properties of 3D braided composites.
The model has taken into account the periodical structure
of the composites and the interaction between the
braiding yarns. The periodical displacement boundary
conditions have been applied in the model. In order to
fully exploit the potential of 3D braided composites, the
effect of the braiding angle and the fiber-volume fraction
on the mechanical properties is analyzed in detail. The

predicted - effective elastic properties are -in good-

agreement with the available experimental data,
demonstrating the applicability of the meso-mechanical
FEM. By analyzing the stress distribution and
deformation of the model, some conclusions are drawn
herein.

MICROSTRUCTURE ANALYSIS AND
UNIT CELL MODEL

Although a few representative unit cell geometrical
models (Li ez al., 1990; Du and Ko, 1993; Wang and Way,
1994; Pandey and Hahn, 1996; Chen et al., 1999) have
been proposed to describe the microstructure of 3D
braided composites, some assumptions of these models
are apparently unreasonable or too simple. It makes some
vital architecture features of the yarn configuration
inconsistent with the true microstructure of 3D braided
composites. For example, 3D braided composites are
composed of the complex fiber-bundle geometry and the
matrix pockets. In order to consider the mutual squeeze of
the yarns, the cross-section shape of the yarn has usually
been supposed to be elliptical. The assumption makes
the configuration of the yarns apparently different with
the experimental phenomena observed experimentally

(Chen et al, 1999) which showed that the yarns
contacted with each other by sharing a plane due to their
mutual squeeze. This important microstructure feature
should not be neglected in the geometrical modeling,
which greatly influences the stress distribution of 3D
braided composites.

In order to perform the analysis of mechanical
performances of 3D braided composites successfully, it
is important to establish a reasonable microstructure
geometrical model which can describe the spatial
configuration of the yarns effectively. According to the
movement of the yarn carriers on the braiding machine
bed and experimental observation (Chen ef al., 1999) the
microstructure of 3D 4-directional braided composites
produced by the four-step 1x1 braiding procedure has
been investigated in detail.

To ensure consistent and uniform fabric structure,
suppose the braiding procedure keep relatively steady,
at last in a specified length of braiding. According to
the movements of carriers, 3D 4-directional braided
composites can be regarded to be made of an infinite of
two kinds of repeated sub-cells, A and B. Figure 1|
schematically shows the distribution of sub-cell A and
sub-cell B in the cross-section of rectangular specimen.
As shown in Fig. 1, sub-cell A and sub-cell B are
constructed, respectively, based on two braiding yarns in

the cross directions. The difference between sub-cell A

and sub-cell B is the spatial directions of the braiding
yarns. It is noteworthy that sub-cell A and sub-cell B
marked with the dash lines distribute alternately every half
of a pitch length h in the braiding direction of the z axis, as
shown in Fig. 2.

Due to the complicated microstructure of 3D braided
materials, it makes unfeasible to undertake a full
micromechanical simulation aiming at a whole structure.
Instead, Representative Volume Element (RVE)-based
approach can be used to analyze the mechanical
properties in the macro-meso scales. Considering the
periodical feature of sub-cell distribution, a unit cell
that is the smallest periodical RVE is selected as shown in
Fig. 1. According to the unit cell partition scheme, all the
unit cells are oriented in the same reference frame as the
specimen, which is quite favorable for the analysis of the
mechanical properties. Figure 2 shows the topological
relation of the main yarns in a parallelepiped unit cell. y is
the angle between the central axis of the braiding yarn and
the z-axis. The relationship between the angle y and the
surface braiding angle o, is defined as

tany =2 tanct (1
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Braiding yarn 1

e

A h/2
OL X V\ -

Sub-cell B

Unit cell

Sub-cell A

Fig. 1: Distribution of unit cells on the cross-section of
rectangular specimen

Sub-cell A

Sub-cell B

Z

ILY.
0 X W,

Fig. 2: Topological relation of the main yarns in the unit

The solid unit cell model of 3D 4-directional braided
composites is shown in Fig. 3. All the yarns used in the
braided performs are assumed to have the same
constituent material, size and flexibility. Considering the
mutual squeezing of the yarns, the cross-section shape of
the braiding yarn perpendicular to the central axis is
assumed to be octagonal and the octagon contains an
inscribed ellipse with major and minor radii, a and b,
respectively, which is shown in Fig. 4.

The width and the pitch length of the unit cell are,
respectively

W, =W, =4/2b @
and
e 3)

Fig. 4: Cross-section shape of yarn

According to the tangent relationship of the elliptical-
cylinders of the braiding yarns, the relationship between
the major and minor radii of the inscribed ellipse, a and b,
can be obtained:

a=+/3bcosy 4)

The lengths of L, and L, in Fig. 4, are given by:

L,=2|: b’cot’ Y+ _a; —bcot'y]siny %)
sin
aZ
L,=2|, [b’cot’ y+——— [siny (6)
sin’y

As the idealized braided composites considered
herein are assumed to be made of the repeated unit cells,
the fiber volume fraction of 3D braided composites can be
determined by the following expression:
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V,=—o" (7

Where, V, is the volume of all the yarns in the unit cell, V,
is the volume of the whole unit cell and @ is the fiber
volume fraction of the yarn.

The 3D sciid unit cell can be established by using the
CAD/CAM software CATIA P3 V5R14.

FINITE ELEMENT MODEL

The RVE-based meso-mechanical FEM mainly
consists of three parts: The periodical boundary
conditions and finite element meshing, the constitutive
relations of components and the definition of the effective
elastic properties. The details of the finite element model
are presented in the subsections.

Periodical displacement boundary conditions and finite
element meshing: Since the analysis is based on the RVE,
the periodical boundary conditions should be applied in
the model in order to obtain a reasonable stress
distribution. Two continuities must be satisfied at the
boundary surfaces of the neighboring cubic RVEs. The
first is that the displacements must be continuous, and
the second is that the traction distribution at the opposite
parallel -boundaries of the RVE must be uniform.
Therefore, the unified periodical displacement boundary
conditions suitable for the RVE proposed by Xia et al.
(2003) were employed in the model. These general
formulas of the boundary conditions are given as follows:

u, =gﬂxk +u; ®)
ut =g, xI" +u )]
u =g, x4 (10)
ut—ul =g, (xI' —xl) =g, Ax] (1)

In Eq. 8, € is the global average strain tensor of the
periodical structure, p'; is the periodic part of the
displacement components on the boundary surfaces and
it is generally unknown. For a cubic RVE as shown in
Fig. 4, the displacements on a pair of opposite boundary
surfaces (with their normals along the X, axis) are
expressed as in Eq. 9 and 10, in which the index “j+”
means along the positive X| direction and “j-” means
along the negative X direction. The difference between
Eq. 9 and 10 is given in Eq. 11. Since A’, are constants for

each pair of the parallel boundary surfaces, with specified
€, the right side of Eq. 11 become constants.

It can be seen that Eq. 11 does not contain the
periodic part of the displacement. It becomes easier to
apply the nodal displacement constraint equations in the
finite element procedure, instead of giving Eq. 8 directly
as the boundary conditions. In order to apply the
coastiaint Eq. i1 in the FEM, the same meshing at each
two paired boundary surfaces of the RVE should be
produced.

Due to the complexity of the microstructure the 3D
solid tetrahedron elements were applied to mesh the
whole model, as shown in Fig. 5. The model is composed
of the straight yarns in various directions and the matrix
pocket from Fig. 5. It is assumed that the perfect bonding
exists between the yarns and the resin matrix pocket.
Uniform meshes had been made to satisfy the continuities
of stress and displacement on the interfaces of the
constitutive materials, including the interfaces of the
yarns in different directions and the interfaces between
the yarns and the resin matrix pocket.

Constitutive relations of components: As shown in Fig. 5,
two “types” of materials are contained in the model. They
are the yarns and the resin matrix pocket, respectively.
The yarns can generally be regarded as the unidirectional
fiber-reinforced composites in the material coordinates
systems.” The principal direction 1 of the material
coordinates systems for a yarn is defined to be paralleled
with the fiber direction. The yarns and the resin matrix
pocket are assumed to be transversely isotropic and
isotropic, respectively. Both of them are believed to be
linearly elastic in the model. The engineering elastic
constants of the yarn can be calculated by the famous
micromechanics formulae proposed by Chamis (1989):

E =¢E; +(-9)E_,

E
E,=E,=—— =™
P 1-Je(-E,/E,)
¢!
G,=G,=—7"——"——,
© T 1-Je1-G, /Gy,) (12)

Gz On
" 1-Jo(1-G,, /Gy’

Vi =V =0V, +(1-@)v,,

E')
Vi =—==—=1.
T 2Gy

Where, @ is the fiber volume fraction of the yarn, E,
is the Young’s elastic modulus of the fiber in principle
axis /, E, is the Young’s elastic modulus of the fiber in
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(a) Yarns

Fig. 5: Finite element mesh of the model

principle axis 2, Gy, is the longitudinal shear modulus of
the fiber, Gy, is the transverse shear modulus of the fiber,
Vp, is the primary Poisson’s ratio of the fiber, E, V,,, and
G.(G, = E/2(1 + v,)) represent the Young’s elastic
modulus, Poisson’s ratio and shear modulus of the matrix,
respectively.

Effective elastic properties: To obtain the effective
elastic properties of 3D 4-directional braided composites,
a homogenization approach is employed in this study by
considering the heterogeneous composites in the micro-
scale to be a homogeneous material in the macro-scale.
Given the periodic cubic RVE, the global strain-global
stress relation can be written as ‘

& =5,5, (13)

Where, S; is the effective compliance matrix. Assuming a
set of the global strain, € and applying the periodic
boundary conditions in the form of Eq. 11 in the FEM
analysis, we can obtain a unique stress distribution of the
RVE. Then the global stress, S, , corresponding to this set
of global strains can be obtained by

c},:ijc av (14)
Z

In the 3D case applying this set of €& (six
components), six equations thus can be obtained. For a
general case where there is no orthotropic axis of
symmetry of the material, the application of four linearly
independent sets of the global strains € will have
sufficient equations to determine 21 independent material
constants of the compliance matrix S; (Xia ez al., 2003).

As the effective compliance matrix S; is one of the
inherent properties for 3D braided materials with the
decided microstructure and component materials, the

(b) Resin matrix pocket

Table 1: Loading cases of periodical displacement boundary condition

5 g g, E, L R
1 0.01 0 0 0 0 0

2 0 0.01 0 0 0 0

3 0 0 0.01 0 0 0

4 0 0 0 0.02 0 0

5 0 0 0 0 0.02 0

6 0 0 0 0 0 0.02

calculation of its value has on relation with the boundary
conditions applied on the RVE. To avoid the trouble of
solving the equations, six sets of global strains were
applied in the FE analysis of RVE. Six sets of loading case
of periodical displacement boundary conditions are
shown in Table 1. - : -
By prescribing the six sets of the global strains, i_-::
(k = 1,2..6), the corresponding global stress 8: can be
calculated by Eq. 14. Then the following equations can be
obtained

=% = =5 =6 = =z 5 =6
{&j,aj,...,&u, aj} =S,,-{cn,-, Gi--»O Gu] (15)

It is easy to obtain the effective compliance matrix S;
through

-1 =2 =5 —=6][—1 —2 —5 —6]7!
Su‘ = {Eij,elj,...,Eij, Eij}{ﬁij, Gijs---, Cij, Gij} (16)

RESULTS AND DISCUSSION

Comparison of effective elastic properties with
experimental results: In order to verify the applicability
of the FEM based on the software ABAQUS, three
examples with typical braiding angles are selected from
the available experiments studied by Chen ez al. (1999).
All the analyses reported herein were done for the 3D 4-
directional braided composites by the 4-step 1x1
rectangular braiding procedures. The elastic properties of
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Table 2: Mechanical properties of component materials

Materials Eq (GPa) Ep (GPa)

Gyy» (GPa)

Gps (GPa) Vi Vi
Carbon fiber T300 230 ’ 40 143 0.25
Epoxy resin 3.5 0.35
Table 3: Braiding parameters of specimens and structural parameters of unit cell model

Braiding parameters of specimens Structural parameters of unit cell model
No. Dimensions (mm) a®) V(%) ¥(°) a(mm) b(mm) ©(%) W,=W, (mm) h (mm)
1 20%6x250 19.0 46.6 26.0 0.599 0.385 57.8 2.175 6.317
2 20%6x250 300 47.2 39.2 0.542 0.404 60.7 2.286 3.960
3 20x6x250 37.0 47.1 46.8 0.503 0.425 62.3 2.402 3.188
the component materials, including 12K T300 carbon fiber and
and TDE-85 epoxy resin, are listed in Table 2. According
to the braiding process parameters of three specimens [ 01110 -00340 -00388 0 0 0 |
from Chen et al. (1999) the main microstructure _00340 01110 -00388 0 O 0
parameters of unit cell models used in the calculation is 200388 -00388 00624 0 0 O
shown in Table 3. §= 0 0 0 - x10° 1/MPa
According to the meshing scheme of the FEM, i

adaptive finite element meshes were used to keep element 0 0 0 0 00642 0
size small in the edges of the matrix pocket. In the study, 0 0 0 0 0 00973

the FEM for specimen No.l consists of 9854 nodes and
49030 tetrahedron elements. The FEM for specimen No.2
consists of 17462 nodes and 88700 tetrahedron elements,
the FEM for specimen No.3 consists of 15298 nodes and
78518 tetrahedron elements. It is noted that relatively fine
meshing size is required in order to obtain more accurate
stress distribution, especially near the boundaries of the
RVE. However, if only the global stiffness is concerned,
relative coarse .meshing size can still provide satisfactory
results (Xia et al., 2006). The meshing size of the models
in this study is sufficient to guarantee the convergence of
the solutions.

The effective elastic properties of 3D braided
composites are first calculated by the FEM and the
calculated stiffness properties are compared with
Chen et al. (1999). The effective compliance matrix S; for
specimen No.1, 2 and 3 are given, respectively, as follows:

[ 01208 -00425 -00126 0 0 O W
-00425 01208 -00126 0 0 0
-00126 -00126 00182 0 0 0O .
S5 o o o0 omes o o [0 Mna
0 0 0 0 00965 0
| 0 0 0 0 0 02535]
[ 01173 -00352 -02%4 0 0 0 ]
-00352 01173 -00284 0 0 O
-00284 -00284 00415 0 0 O "
i = x10° 1/MPa
0 0 0 00676 0 0
0 0 0 0 00676 0
0 0 0 0 0 01412

It is found that 3D 4-directional braided composites
can be considered to be transversely isotropic materials
in the macro-scale under small deformation assumption.
According to the relationship between the engineering
elastic constants and the compliance matrix S;, the
engineering elastic constants of 3D 4-directional braided
composites, including nine independent elastic constants,
can be calculated by : =

o ol e oy i L
S, S, S5
S S
) ez 08 _. V2 (17)
-y Szz > My . s My, S;;
Gp:_l_’ Gx7= L’ vaz L
Sy Sss T S

Table 4 gives the predicted and measured elastic
constants of 3D braided composite. There is a good
agreement between the measured and predicted axial
tensile modulus for all the three samples studied. The
predicted Poisson’ ratios are basically agreed with the
measured values. The results indicate that the proposed
FEM can be used to calculate the global elastic properties,
demonstrating the applicability of the meso-mechanical
FEM.

Deformation of unit cell and distribution of stress: For
3D 4-directional braided composites with periodical
structures, RVE-based finite element model can also be
used to calculate the mechanical properties in the meso-
scale, such as the deformation of the model, distribution
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Table 4: Comparison of the effective elastic constants predicted by the model and experimental data

No.l No.2 No.3

Elastic constants Experiment Predicted Experiment Predicted Experiment Predicted
E./GPa 8.28 8.52 9.01
E,/GPa 8.28 8.52 9.01
E,/GPa 58.74 54.85 27.60 24.12 18.05 16.03
G,,/GPa 10.36 14.80 15.57
G,,/GPa 10.36 14.80 15.57
G/GPa 3.95 7.08 16.27
Viz 0.72 0.69 0.78 0.68 0.80 0.62
Vi 0.69 0.69 1.00 0.68 0.72 0.62
V. 0.35 0.30 0.31

(a) Deformation of positive
surface vertical to z axis

Fig. 6: Surface deformation of the model under loading case 3

of stress and stress concentration, etc. To demonstrate
the application, the FEM of specimen No.2 subjected to
typical loading cases is chosen to show the meso-
mechanical behavior of 3D 4-directional braided
composites.

Figure 6 shows the deformation of two parallel
boundary surfaces vertical to the z axis of the model
subjected to loading case 3, k = 3. Under such loading
case, € equals to 0.01 and all the other 5 effective
average strains equal to zero. From Fig. 6, the two
opposite boundary surfaces do not remain plane any more
and are warped after the deformation (the magnified factor
of the deformation is 100 times). The warped deformation
occurs simultaneously at the other two sets of opposite
boundary surfaces of unit cell, but the warped extent is
relatively weak. The reason resulted in the phenomena is
that the unit cell model of 3D 4-directional braided
composites does not have the symmetries of geometrical
structure and physical properties.

Figure 7 shows the deformation of the model
subjected to loading case 6, k = 6. Under such loading
case, 7‘ equals to 0.02 and all the other five effective
average strains equal to zero. From Fig. 7, the set of
opposite boundary surfaces vertical to the x axis,
respectively, do not remain plane after deformation and

&

A
O
R e
= R

(b) Deformation of negative
surface vertical to z axis

the warped deformation has occurred (the magnified
factor of the deformation is 50 times). The same warped
deformation occurs simultaneously at the opposite
boundary surfaces vertical to the y axis. However, the
warped deformation extent at the opposite boundary
surfaces vertical to the z axis is relatively weak. From
Fig. 6 and 7, the FEM based on the periodical
displacement boundary conditions guarantees the
displacement continuity at the opposite surfaces between
the neighboring RVEs.

By analyzing the numerical results of the model, all
the stress components at the corresponding parallel
boundary surfaces have the uniform stress distribution.
For example, Fig. 8 shows the maximum principal stress
nephogram of the whole FEM, the yarns and the resin
matrix pocket in the model subjected to loading case 3.
The traction continuity at the corresponding parallel
boundary surfaces has been guaranteed and satisfied the
periodic condition. From Fig. 8, it can be seen that the
stress in yarns is about 20 times than that in the matrix
pocket region. This indicates that the yamns of 3D 4-
directional braided composites share the primary tensile
load. As shown in Fig. 8 c, stress concentration is
produced in the contacting region between the yarns and
the matrix pocket. The closer to this region, the greater
stress is produced.
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(a) Deformation of positive
surface vertical to x axis

Fig. 7: Deformation of the model under loading case 6

(b) Deformation of negative
surface vertical to x axis

(c) Resin matrix

Fig. 8: Maximal principal stress nephogram of the model No.2 under loadind case 3

Discussion on the effective properties of 3D braided
composites: The unit cell of 3D 4-directional braided
composites produced by the 4-step 1x1 rectangular
braiding procedures can be characterized by two
independent micro-structural parameters, including the
braiding angle and the fiber-volume fraction. In this
section, the effects of the two parameters on the effective
elastic properties of 3D braided composites are studied
with the meso-mechanical FEM. The models were
established as shown in this study. The width of unit cell
W, is assumed to be 2.30 mm in the models. The models
with different fiber-volume fractions under a same
braiding angle are obtained by defining the fiber-volume
fraction of the yarn from Eq. 7. The elastic properties of
fibers and matrix are shown in Table 2.

Figure 9 shows the variation of the predicted elastic
constants of 3D braided composites with the increasing
braiding angle, including three samples with different

fiber-volume fractions. Figure 9 a describes that the
elastic modulus E, decreases sharply as the braiding angle
increases. With the fiber-volume fraction increasing, the
elastic modulus E, increases as a whole. However, when
the braiding angle is small, the change of the elastic
modulus E, caused by the increment of fiber-volume
fraction becomes comparatively significant. Figure 9 b
gives that the elastic modulus, E, or E, (E, = E,), varies
with the braiding angle. The elastic modulus E, increases
steadily as the braiding angle increases. With the fiber-
volume fraction increasing, the elastic modulus E,
increases in a similar tendency. Figure 9 ¢ depicts that
the shear modulus G,, increases monotonically with the
increasing braiding angle. As the fiber-volume fraction
increases, the shear modulus G,, increases. When the
braiding angle is about 40 deg., the change of the shear
modulus G,, caused by the increment of the fiber-volume
fraction is cbmparatively larger with increasing the fiber-
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Fig. 9: Variation of engineering elastic constants with structural parameters

olume fraction. Figure 9 d presents that the shear structural parameters. Therefore, optimization of the
modulus, G,, or G,, (G, = G,,), firstly increases and then structural parameters can help to reduce the design time
decreases. With the increase of the fiber-volume fraction, and save the manufacture costs.

the shear moduli, G,, and G,,, increase. Figure 9 e-f shows

that the variation of the Poison’s ratios, v,, and v,, (v,, = CONCLUSION
v,), with the braiding angle. With increasing the
braiding angle, v,, firstly decreases and then increases; A new finite element model based on the RVE is

v,, and v,, firstly increase and then decrease. As the fiber- proposed to predict the effective elastic properties and
volume fraction increases, the Poison’s ratio v, the meso-mechanical behaviors of 3D braided composites.
decreases. With increasing the fiber-volume fraction, the The 3D model takes into amount the periodical structure
Poison’s ratios, v,, and v,,, increase. of the composites and the interaction between braiding

As shown in Fig. 9, the effective elastic properties of ~ yarns. The predicted effective elastic properties are
the composites have been influenced by the two compared favorably with the experimental data,
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demonstrating the applicability of the meso-mechanical
FEM. Meanwhile, the method proposed is convenient to
predict the effective global stiffness of 3D braided
composites. The effect of the braiding angle and fiber-
volume fraction on the engineering elastic constants has
been discussed in detail. The results show that the elastic
modulus E,, is influenced significantly by the braiding
angle. By analyzing the stress distribution and
deformation, it is proved that the model guarantees the
displacement continuity and the traction continuity at the
surface boundaries of the neighboring RVEs. The RVE-
based finite element model can obtain a reasonable stress
field in the meso-scale.

Future research will focus on the strength and failure
analysis of 3D 4-directional braided composites by using
the meso-mechanical FEM.
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Prediction of elastic constants and simulation of stress field of 3D braided
composites based on the finite element method

T . L4
XU Kun, XU Xiwu
( Research Institute of Structures and Strength, Nanjing University of Aeronautics

and Astronauties, Nanjing 210016, China)

Abstract:  Based on the microstructure model established by the authors, coinciding with the actual configuration of
braided composites, a model to predict the elastic properties was proposed by using the 3D FEM, coupled with the
periodical boundary conditions. The calculated values by the model well agree with the measured values. Numerical
results verify the effectiveness of the model. The stress and strain fields of the model under such typical load cases
as tension and shear were analyzed in detail, respectively. The results indicate that the application of the periodical
boundary conditions guarantees the continuities of the traction and displacement on the parallel boundary surfaces of

the cubic model. Therefore, the stress field and the strain [ield obtained by the model are more reasonable than by

the existing FEM models.
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