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Qing Zou asked me to contribute some remarks
introductory to the book that follows. I have not read it. 1
have indeed only seen a relatively small number of pages.
Moreover, although in the course of my career as a
mathematician and, in general, in the course of my life, I
have acquired a working knowledge of several languages,
Chinese in any of its forms is not one of them. Consequently
I have not read even the pages received and can only guess at
their content and that of the text as a whole. So this
appreciation consists of jottings suggested by my own
reflections over the years, but not entirely unrelated to the
pages at hand.

Since the phrase Langlands programme makes me
uneasy, I would like to think of the appreciation as a
collection of partly autobiographical but largely historical
comments on those parts of pure mathematics, of which
there are surprisingly many, that appear in the contemporary
theory of automorphic forms or automorphic representations.
They have been embraced by it—or coupled to it—over the
course of the nineteenth, twentieth, and now of the twenty-
first centuries with, I believe, an inevitability that is hard to

deny. My comments here are not unrelated to those in the lecture



Is there beauty in mathematical theories? (see The many faces of beauty ,
ed. Vittorio Hésle) but are perhaps more mature. Nevertheless, they still
remain in good part provisional. In contrast to those earlier remarks, what
follows is directed to individuals with an active interest in mathematics, in
particular to the readers of Qing Zou’s book. So I do not hesitate to suggest
topics on which they might reflect.

The current theory of automorphic representations. has a number of
aspects that it is important to distinguish from each other, either because one
is at a higher conceptual level than another or because — their resemblance,
which indeed is compelling, notwithstanding — they refer to mathematical
domains with different techniques and different histories. On some I have
reflected for long periods, on others for short periods, and on some of the
most important not at all. Their classical manifestations appeared with:
(i) the quadratic reciprocity law and its development as class-field theory in
the hands of Weber, Takagi, Artin and others; (ii) with Cartesian geometry
either in the form of algebraic geometry or of differential geometry, where
Lefschetz, Hodge or Chern are familiar names, not to speak of Riemann or
the discoverers of non-euclidean geometry; (iii) with the theory of groups and
their representations, to which are attached, among others, the names of
Galois, Frobenius, and in recent times Harish-Chandra; (iv) algebraic
geometry over finite fields, in which two representative names are Weil and
Grothendieck; (v) the developments arising from the classical theory of
elliptic modular function, especially p-adic deformations, whose importance
Serre has emphasized and which feature prominently in the proof of Fermat’s
theorem by Wiles, and the theory of Shimura varieties; (vi) the theory of
automorphic forms on general groups as developed., even rescued, by Siegel
largely as a continuation of the work on quadratic forms, by a large number of
prominent nineteenth-century mathematicians, Eisenstein, Minkowski and
others — this is not the place for a careful history and I am not the one to
prepare it — and greatly enriched by Maaf and then Selberg and others as the
analytic theory of automorphic forms. There are other currents appearing

simultaneously with those in this list, perhaps even inseparable from them:



(vii) algebraic number theory as created by Gauss, Kummer, and Dedekind
and others; (viii) the theory of L-functions, in which Dirichlet is a prominent
name, as is Hecke., whose work strongly influenced MaaB, and who, along
with Siegel may be regarded as one of the founders of the general theory of
automorphic forms. A systematic history would demand the inclusion of
many more names and a much more elaborate chain of succession.

All of these theories or initiatives were current as | began my
mathematical career in 1960, ending my student days with a doctorate from
Yale and beginning my career as a professional mathematician at Princeton.
The years at Yale and those at Princeton were among the most profitable of
my mathematical life. T had the good fortune to be largely master of my own
time and from reading or from various courses was introduced not only to
functional analysis and analysis as presented in the first edition of Zygmund,
in Hille’ s book on analytic semi-groups, and in Stone’ s book Linear
transformations in Hilbert space but also to the Hecke theory and to
Selberg’s lecture on Eisenstein series and the trace formula, almost his only
publication on the subject. I cannot say that I understood all these books as
well as I might have, but they, with the addition of the book of Coddington
Levinson on ordinary differential equations, certainly provided me with a
knowledge of basic linear analysis and of functional analysis that was a big
help as I was trying to find my way through Siegel’s papers in my first years
at Princeton. It also meant that I was able to follow Selberg’ s oral
presentation of the proof of the analytic continuation of the Eisenstein series
for SL(2) in my first, and surprising as this may be, my last mathematical
conversation with him, since our offices were, many years later, essentially
side-by-side for a good long time. Selberg was not always a taciturn man,
but, in my experience, not given to talking about mathematics. For groups of
rank-one, the analytic continuation is a chapter in the spectral theory of
differential equations on a half-line. It was a great pleasure to speak, for the
first time in my life, with a strong mathematician about serious mathematical
matters, or rather to listen to him. Since there was no published version of

his arguments available, it was also very important as I developed the



arguments that appeared in the notes On the Functional Equations Satisfied
by Eisenstein Series that 1 was familiar with the argument for SL(2).

Selberg, I am sure, had invited me to his office at the suggestion of
Salomon Bochner, whose encouragement and suggestions also played a
decisive role in my first years at Princeton. In the first months, 1 was as a
very junior mathematician invited to speak in the analysis seminar. Although
my thesis, later incorporated in the book of Derek Robinson, who
incorporated some of the results into his book on Elliptic Operators and Lie
Groups had been on semi-groups and partial differential equations, the talk
was about a theorem that I had proved as a graduate student while studying
Selberg ” s paper. 1 believe that Bochner, whose early years as a
mathematician had been spent in Germany and who, various clues suggest,
moved in the same mathematical circle as, say, Hasse and Emmy Noether,
was not only very fond of Dirichlet series but also very favorably impressed by
my independence. 1 had worked alone as a graduate student but, more
importantly, on at least two different subjects. He encouraged me in a
number of ways, above all by suggesting that 1T give a course on class field
theory. This was a terrifying suggestion. In the early 19607’ s class field
theory was unknown outside of Germany and the circle of Artin’s students in
Princeton, and not regarded as otherwise accessible. He insisted, and on the
basis of Hecke’s book. Vorlesungen “uber die Theorie der algebraischen
Zahlen , and Chevalley’s thesis | managed to give a course to a small number
of very tolerant students. It is astonishing to reflect how much and how many
varied topics I became [amiliar with in those years. In particular, thanks to a
suggestion of David Lowdenslager, who died very young, I turned while
studying Siegel and Selberg to the papers of Harish-Chandra.

Two problems attracted me: the construction of a non-abelian class field
theory; the correct (1) definition in the context of the general theory of
automorphic forms of the notion of an L-function. They were discouragingly
difficult, and I did abandon them for some time, but suddenly as the result of
idle computations with the functional equations of Eisenstein series a road to

the simultaneous solution of both of them was opened. It is not that other



suggestions were not being made, one, at least, of some use but most not,
but I had and have today even more the conviction that the definition implicit
in the theory of Eisenstein series reveals the essence of the theory of
automorphic forms or representations. As the result of a chance encounter, 1
described these ideas, at the beginning of 1967 and in an inchoate form, in a
letter to André Weil, which is still, in spite of its raw form, largely valid.
The subject has nevertheless changed. Not only has it progressed, but its
goals, influenced by the reflections and contributions of many people, have
changed. Although many very difficult problems remain to be solved and
many difficult notions remain to be clarified, the conceptual structure of the
theory is becoming clearer. Whether this clarity is generally accepted is
another matter,

I have tried and continue to try. in for example the Rogawski paper and
the Mostow lecture®,to explain my stance. There are three central issues —
functoriality, the geometric theory, reciprocity, of which the first and the
last will be perhaps of most interest to the readers of this book. There are
also special aspects, fascinating in themselves, all difficult, some extremely
challenging, but which can, and probably should, be examined as
independent issues. There are, for example, local questions: (i) the
representation theory of reductive groups over non-archimedean fields;
(i1) endoscopy, especially over non-archimedean fields; (iii) Arthur packets
over all types of local fields. There are good reasons for an individual
mathematician to focus on any one of these areas.

The geometric theory is. if not conceptually independent of the other
issues, technically independent. The base field in the usual theory of
automorphic forms is an algebraic number field of finite degree over Q; in the
geometric theory, the base field is the field of meromorphic functions on a
compact Riemann surface. In it, there is a connection to theoreticalphysics,

provided by, for example, the duality associated to the names Montanen-
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Olive. This connection may be the principal source of the notoriety of the
Langlands program, but interesting as it is, it does not seem to me the major
reason for mathematicians to concern themselves with the geometric theory.
For them, the major reason is rather the presence of functoriality, thus of a
central feature of the arithmetic theory, in the geometric theory where it
appears to draw on a large number of the central notions of pure
mathematics, especially of differential geometry, namely connections and
curvature. It is not that functoriality in itself is essential to the geometric
theory, but it adds a differential-geometric richness that is easily obscured by
the impulse, not, I think, entirely happy, to treat the geometric theory as a
topic in sheaf-theory. That is, I feel, too confining.

The first and the third topics, functoriality in the arithmetic context and
reciprocity, will be arithmetic or algebro-geometric. There is no reason to
think that reciprocity has a geometric form. Functoriality precedes reciprocity
and they share (or are expected to share) what might be called a non-abelian
class field theory: functoriality when the source group is the group with one
element, namely {1}; or reciprocity when the algebraic variety (or motive) is
the cohomology of a variety of dimension 0, thus a set of points.

I remind the reader that functoriality is not yet available either at the
local level or at the global level. At the local level, it is expected to be a
feature of the representation theory of reductive groups. At the global level,
it is. as explained in the Rogawski paper, expected to be a consequence of the
trace formula, but by no means an immediate consequence. It is an
expression of the introduction of the L-groups into the theory. A basic
ingredient of functoriality and of the letter to Weil is the assignment to each
reductive group G over a field F, local or global, of an L-group “G, which is
a group over C. Questions of endoscopy aside, local functoriality assures that
the representation theory of a group G defined over a local field is cogredient
in G, thus when there is a homomorphism “ H —" G, there is a set-theoretic
mapping of the collection of (appropriate equivalence classes of) irreducible
admissible representations of H(F) to those of G(F). Functoriality. another

designation for this cogredience is a substitute for, or an adjunct to, the



Galois group. As such it is a complicated notion and needs to be explained in
detail, but much has been done. So there is no doubt of its pertinence. Over a
global field the appropriate property is a cogredience for automorphic
representations.

Locally the existence of functoriality is regarded as a problem in the
theory of the representations of G(F,), F, the local field, and as such only
partially solved. In the Rogawski paper a program for establishing the
existence of functoriality in a global context is sketched. It will be very
difficult and will demand the use and development of methods from analytic
number theory, methods whose focus is zeta-functions, L-functions, and
Dirichlet series. Some progress has been made since that text was written,
but much, much more is required. It will have many consequences.

The third issue, reciprocity, has not yet been seriously addressed.
Arithmetically it is at a different level than functoriality. Global functoriality,
like global class-field theory is an arithmetic theory and thus will demand the
study of diophantine problems. This is intimated in the Rogawski paper and
elsewhere. The diophantine problems are, however, discrete and are not
encumbered by the geometry of varieties of positive dimension. Nevertheless
global functoriality will provide a solution to the problem of reciprocity for a
limited class of motives, those of dimension 0. Moreover functoriality implies
that the collection of (stable classes of ) automorphic forms has a linear
structure, or rather a tensor structure, analogous to the Tannakian structure
that was introduced in the context of motives by Grothendieck. The problem
posed by reciprocity is to show that the second structure, the motivic
structure, is a substructure of the first, the automorphic structure. Here,
however, a major preliminary problem appears: establish the existence of an
appropriate tensor structure for motives. Grothendieck and his collaborators
attempted to so but with only partial success. This means that we — or
rather the youthful among us, for there is little, I fear, that we elderly can
offer, except encouragement — are faced with the problem of establishing
two theories simultaneously, a theory of motives and a theory of reciprocity

for motives. It may be easier, perhaps even necessary, to deal with both at



once.

In the previous paragraph, I have used five times a word motives that I
cannot expect the reader to understand or necessarily to have encountered. It
expresses, at the moment, more a hope, a hope based on considerable
experience, than a genuine theory. The hope, or the expectation, is that a
theory of diophantine equations, thus of equations less over Z as one could
expect from the allusion to Diophantus than over Q, or perhaps over a finite
algebraic extension of Q is, as in the study of Galois groups and their
representations, for some purposes, best expressed by linear structures of
some kind associated to the equations, thus to the algebro-geometrical
objects — sets of points, curves, surfaces, or higher-dimensional varieties —
they define and to the not easily understood topological structures attached to
these, especially subspaces of their cohomology. These linear structures are
not readily come by and the applications, although important as mathematical
achievements, rare and not easily accessible

Before we come to motives and reciprocity, it is best to recall that once
again, as at the end of the nineteenth century and beginning of the twentieth
when class field theory was developed, the link between the new objects,
automorphic representations, or to be more precise L-packets of automorphic
representations, and motives, remains the L-functions; Hecke L-functions
associated to automorphic representations; Hasse-Weil L- functions
associated to motives. The properties of the L-functions and of their local
factors, for they are both given as Euler products, is a consequence of the
relation, referred to here as reciprocity, between the tensor structures.
Concretely it comes to statements affirming that such and such an L-function
attached to an algebraic variety, according to principles first formulated in all
generality by Weil and developed by Grothendieck and others, is equal to such
and such an L-function attached to an automorphic form by principles to
which the name of Hecke, among others, is attached. A coarse, even very
coarse, assertion of the utility is that the Hasse-Weil or Artin L-functions
have clear arithmetic properties although their analyticproperties are

unknown, while Hecke L-functions have clear analytic properties but



whatever arithmetic they directly reflect appears only initially in their
construction and is followed by a great deal of difficult analysis. For
mathematicians attached to mathematics that can, in spite of or because of its
profundity, be expressed in a more elementary fashion, the proof of Fermat’s
theorem is perhaps a more persuasive demonstration of the importance of
reciprocity, but our concern here is the search for a general demonstration of
its validity.

It was Grothendieck and his collaborators who first attempted to create a
theory of motives, but without reflecting that reciprocity might be relevant,
almost certainly without even an inkling of its extent. Whether for this or
other reasons, they appear not to have been successful. He, or they, had a
clear idea of the algebro-geometric information necessary to the construction
of the theory. These were the standard conjectures, an expression of some
deep properties of algebraic varieties. I shall review them briefly here because
I feel that reciprocity is unlikely to be established until there are
mathematicians who understand not only modern algebraic geometry but also
modern representation theory. At the moment, it can hardly be said that
there are any who do so. My own knowledge of algebraic geometry is,
unfortunately. superficial from both an intuitive point of view and a technical
point of view. My basic source for this appreciation is the two articles of
Kleiman, Algebraic cycles and the Weil conjectures, 1968, and The standard
conjectures, 1991, but I have also consulted the brief essay of Grothendieck,
Standard conjectures on algebraic cycles. My suggestion, for which I have no
good grounds, except that there seems no alternative, is that it might be best
to attack these conjectures and related conjectures, such as the Hodge
conjecture, simultaneously with reciprocity, thus to move forward on the two
fronts simultaneously.

This would mean in particular that we would develop the theory of
motives at first for varieties over number fields of finite dimension over Q and
only afterwards for varieties over general subfields of C. This does not strike
me — perhaps as a result of ignorance — as an outrageous idea. Over number

fields, there are a number of techniques, for example p-adic deformation, of



which my command is shamefully weak, that are developed, have been
applied, and are undoubtedly important. How difficult it might be to pass
from the standard conjectures over number fields to the standard conjectures
over fields with transcendent elements I cannot say at the moment. 1 can
imagine that it would, for a competent geometer, be an accessible problem.

I do not know what the theory of Shimura varieties, from which I have
profited tremendously, can offer. Their study suggested notions like
endoscopy and the Taniyama group., not to mention reciprocity itself, for
which the Shimura varieties provide in a number of ways the best evidence
available. Nevertheless their attraction for many mathematicians looks
sometimes to me like the attraction of the lamp-post for the drunkard who has
lost his keys, although sometimes the lamp-post is, in spite of its possible
futility, the most promising of the available choices.

As far as I can see, {rom a brief and superficial examination, is that there
three levels at which one can work, but which is best to distinguish:

(1) the Hodge conjecture;

(i) the two standard conjectures, the Lefschetz standard conjecture and
the Hodge standard conjecture, which is not the same as the Hodge
conjecture;

(ii1) the Welil conjectures and the work of Deligne.

Long ago, in the spring of 1967, just a few months after I wrote the
letter to Weil, I was returning to Princeton from a day in Philadelphia, and
on the way to the platform in the railroad station, 1 began to reflect on the
Ramanujan conjecture, the theorem of Rankin- Selberg, and the possibilities
suggested by the introduction of the general automorphic L-functions of the
letter. I had never examined the paper of Rankin, written in 1939, when he
was 24 years old, nor the paper of Selberg, written in 1940, when he was 23
years old, but I had some idea from hearsay or thought I had some idea, not
only of what they had done, but also why they were able to obtain their
estimates toward the Ramanujan conjecture. If the Hecke L-function

associated to a classical automorphic form was
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So Landau’s theorem on Dirichlet series with positive coeffcients, as on p. 10
of the book of Hardy-Riesz, The general theory of Dirichlet series, would be
applicable. As I remember, it occurred to me on the escalator taking me to
the platform that once the general theory described in the letter was available,
thus functoriality, this argument would apply to the general form of
Ramanujan’s conjecture and, even for GL(2), yield the full result, not just a
weaker estimate. Two to three years later, in a lecture in Baltimore,
published as Problems in the theory of automorphic forms, §8, 1 described
the argument briefly, although rather glibly, largely because no-one had yet
reflected on the nature of Ramanujan’s conjecture in the context of a general
reductive group. The Arthur packets were not to be introduced for some
time.

Katz in his Dekalb lecture An overview of Deligne’ s proof of the
Riemann hypothesis for warieties over finite fields suggests that the
observation was a clue for Deligne to his proof of the Weil conjecture. Deligne
himself does not mention it, not even as a suggestion that it might be
profitable to consult Rankin. In a conversation more than thirty years later
with me and Peter Sarnak, he was quite adamant that the clue came entirely
from Rankin’s paper. I, myself, was in no position in the 1970’ s to read
Deligne’s papers on the Weil conjectures or on Hodge theory, nor had my
ideas about automorphic forms matured to their present stage. It seems to me

now evident that for a possible simultaneous development of the theory of

"



motives and the theory of automorphic representations some familiarity,
perhaps even a great deal, with these papers — combined with a mastery of
the necessary analysis — would be advised.

I recently came across a brief essay by Illusie, Pierre Deligne et la
géométrie arithmétique, in which he recounts Grothendieck’ s reaction on
hearing that the last of the Weil conjectures had been proven. Apparently
Grothendieck “était content, mais en méme temps,évidemment, un peu décu
que les conjectures standardes elles-mémes n’aient pas été démontrées. ” The
close relation between automorphic representations or forms. thus of the
Ramanujan conjecture in its first guise, and the Weil conjectures was familiar
to a number of mathematicians, in particular, to Weil. So rather than being
disappointed, Grothendieck, if he had responded with what I suppose — for
although I had been in the same room with him twice, I had never spoken to
Grothendieck — was his former confidence and vigour, might have concluded
that the correct way to attack the theory of motives was through the theory of
automorphic forms and proceeded accordingly. He may, of course, have been
unaware of its possibilities. It is difficult, especially from the outside, to
weigh the importance of all the elements that a complete theory of algebraic
geometry and arithmetic might contain, but it may be that the Weil
conjectures should be considered a waymark and not the goal. We are perhaps
not yet at a stage where we can assure Grothendieck that the items (ii) and
(ii1) are indeed closer and more entwined than he thought, but we can hope
that his disappointment was premature. Experience with, say, the theorem
of Fermat suggests that their relation with each other or with reciprocity will
not be established easily or rapidly.

I promised that this appreciation would be short. It may already be too
long. I would like to finish with some words, as few as possible, that provide
both the reader and the author with some understanding of what is needed to
introduce the notion of a motive and prepare them for distinctions like that
between the Hodge conjecture and the Hodge standard conjecture. There
are, as already observed, two standard conjectures, distinguished by the

names of Hodge and Lefschetz. The two together are, apparently, sufficient
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for the creation of a theory of motives in Grothendieck’s sense and they are
both implied by the Hodge conjecture itself. Before describing them roughly,
let me describe informally the conjectural construction of motives.

They are diophantine objects, or rather categories formed from
diophantine objects. They are, at first glance, intuitive enough. One begins
with a category whose objects are smooth projective algebraic varieties X and
whose homomorphisms consist of the space Hom (X, Y) of numerical
equivalence classes of algebraic cycles on X XY of dimension » = dim X, thus
formal integral (or rational) finite linear combinations > a,U,, of subvarieties
of X XY two being equivalent if the intersection numbers > ,a,U,.V are equal
for all subvarieties V of X XY of dimension dim Y. So their definitions require
a sophisticated knowledge of algebraic geometry. There is a product Hom(X,
Y) XHom(Y,Z) - Hom(X,Z). For the motivic structure, there are two
elaborations. First of all, the category just defined has a linear and a
multiplicative structure. So we can add to the objects by formally introducing
the images of all idempotent endomorphisms. There is also an additional
object to be introduced, the Tate motive, whose function will be explained
after the central issue is described. Adding it, as in Kleiman’s 1991 essay,
and fixing the field F of definition of the varieties and of the cycles we
arrive — I believe —at the category of motives over F.

According to Grothendieck’s essay, the theory of these motives is “a
systematic theory of ¢ arithmetic properties’ of algebraic varieties, as
embodied in their groups of classes of cycles for numerical equivalence”. One
can fix the field of definition of these cycles, for the moment a number field F
of finite dimension over Q. Once global functoriality is proved, we can use it
to associate a similar category to the theory of automorphic representations
over F. This will be much larger, but the hope is to prove that it contains the
motivic theory as a subcategory — a much smaller subcategory. This would
be the theory to which I refer, anticipating its development, as reciprocity. 1
regard it as a possible generalization — clearly at an altogether different
conceptual level — of the quadratic reciprocity of Euler, Legendre and Gauss.

I observe that there may be a complication that the provisional “theory”
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of motives described above does not explicitly envisage, namely a form of
endoscopy. 1 do not care to speculate what form it would take. It might be
instructive to examine the possibilities that appear in the theory of Shimura
varieties and their conjugates.

The category or categories defined by functoriality will be Tannakian,
thus, in particular, there will be a notion of contragredient object, provided
by the contragredient of the underlying representation of G (A). The
introduction of the Tate motive ensures that the contragredient exists in the
motivic context.

The Hodge conjecture itself is discussed in many places. Its statement is
fortunately easy. If X is an n-dimensional algebraic variety and p<C» then a
class in H”*(X) () H**(X,Q) is realized as a rational linear combination of
the classes associated to subvarieties of dimension p. Anyone attempting to
establish the standard conjectures might also want to decide whether the
Hodge conjecture was true or false. The standard conjectures are more
technical, but that they are associated to the names of Lefschetz and Hodge
suggests that they have a strong geometric flavour none the less. All of these
conjectures are statements about rational or integral linear combinations of
subvarieties of X that are not necessarily smooth and are viewed as topological
objects. The appropriate notion of equivalence (r-equivalence in the two
papers of Kleiman) for such linear combinations is almost the same as
algebraic equivalence, two such linear combinations being regarded as
algebraically equivalent if one can be algebraically deformed to the other. A
proper appreciation of both these notions requires experience. To gain that, it
is necessary to consult not only the papers of Kleiman but also standard texts.

In addition to the Lefschetz standard conjecture, there are two Lefschetz
theorems, the weak and the strong. Both state, in one form or another, that
the section of a smooth irreducible projective variety X by a linear space
carries about all the cohomology of X that it possibly can. One starts from a
smooth projective variety X and considers a smooth hyperplane section YC X.
If the dimension of X is r, and the dimension of Y is »—1, then Y defines a

cohomology class yx (Y) of degree 2 on X. We can multiply by this class x —
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