Python Cookbook (¥EkR)

O’REILLY"

% &K%t David Beazley & Brian K. Jones &

B=IR

Python Cookbook %
Python Cookbook

David-Beasley, Brian K. Jones &

O’REILLY"

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo
O’Reilly Media, Inc. 44X & i X 5 & AL $ A

R R KFHMRAL

EHEMGmE (CIP) #iE

Python Cookbook: &5 3 R 3 /(J8)ELZ4F] (Beazley. D.).
Bl (Jones, BK)# . —2EIA . —mint: A ARFEH
I fl, 201401

[5#)50 5. Python Cookbook, 3E

ISBN 978-7-5641-4598-9

L. @P- IL Otk @f- N O LH- BT
Pl - e V. @ TP311.56

e R AS 1R 155 CIP #e e d% 7 (2013) 45 246079 5
(I BTy S ERCA TRk ID

. 10-2012-2 %

2013 by O'Reilly Media, Inc.

S B R O Reilly
S LR A KA R
Media, Inc. 65357

WAALPT A . AR @ AT AR AT AR o e &3 AT X

Python Cookbook 48 — it (FZEThR)

W AT AsrE KA R L

i) bl rE RTPY AR 2 5 4. 210096
S R NP R = 4

4] fil: http://www.seupress.com

L -H s . press@seupress.com
gl W e li EVRAT B2]
I AL 78T Bk x 980 =K 16 A

) gl 44.25

5 ¥e. 867 T

i e 20144E 1 A5 1

E(l U 201445 1 G 1 IR ED A
[. ISBN 978-7-5641-4598-9
i ffr: 98.00 & (M)

ASELIED 1525 A7 EI e W e) 80, 1 A2 9 BT £ . BT (R 2) . 025-83791830

Preface

Since 2008, the Python world has been watching the slow evolution of Python 3. It was
always known that the adoption of Python 3 would likely take a long time. In fact, even
at the time of this writing (2013), most working Python programmers continue to use
Python 2 in production. A lot has been made about the fact that Python 3 is not backward
compatible with past versions. To be sure, backward compatibility is an issue for anyone
with an existing code base. However, if you shift your view toward the future, you'll find
that Python 3 offers much more than meets the eye.

Just as Python 3 is about the future, this edition of the Python Cookbook represents a
major change over past editions. First and foremost, this is meant to be a very forward
looking book. All of the recipes have been written and tested with Python 3.3 without
regard to past Python versions or the “old way” of doing things. In fact, many of the
recipes will only work with Python 3.3 and above. Doing so may be a calculated risk,
but the ultimate goal is to write a book of recipes based on the most modern tools and
idioms possible. It is hoped that the recipes can serve as a guide for people writing new
code in Python 3 or those who hope to modernize existing code.

Needless to say, writing a book of recipes in this style presents a certain editorial chal-
lenge. An online search for Python recipes returns literally thousands of useful recipes
on sites such as ActiveState’s Python recipes or Stack Overflow. However, most of these
recipes are steeped in history and the past. Besides being written almost exclusively for
Python 2, they often contain workarounds and hacks related to differences between old
versions of Python (e.g., version 2.3 versus 2.4). Moreover, they often use outdated
techniques that have simply become a built-in feature of Python 3.3. Finding recipes
exclusively focused on Python 3 can be a bit more difficult.

Rather than attempting to seek out Python 3-specific recipes, the topics of this book are
merely inspired by existing code and techniques. Using these ideas as a springboard,
the writing is an original work that has been deliberately written with the most modern
Python programming techniques possible. Thus, it can serve as a reference for anyone
who wants to write their code in a modern style. '

Xi

In choosing which recipes to include, there is a certain realization that it is simply
impossible to write a book that covers every possible thing that someone might do with
Python. Thus, a priority has been given to topics that focus on the core Python language
as well as tasks that are common to a wide variety of application domains. In addition,
many of the recipes aim to illustrate features that are new to Python 3 and more likely
to be unknown to even experienced programmers using older versions. There is also a
certain preference to recipes that illustrate a generally applicable programming tech-
nique (i.e., programming patterns) as opposed to those that narrowly try to address a
very specific practical problem. Although certain third-party packages get coverage, a
majority of the recipes focus on the core language and standard library.

Who This Book Is For

This book is aimed at more experienced Python programmers who are looking to
deepen their understanding of the language and modern programming idioms. Much
of the material focuses on some of the more advanced techniques used by libraries,
frameworks, and applications. Throughout the book, the recipes generally assume that
the reader already has the necessary background to understand the topic at hand (e.g.,
general knowledge of computer science, data structures, complexity, systems program-
ming, concurrency, C programming, etc.). Moreover, the recipes are often just skeletons
that aim to provide essential information for getting started, but which require the
reader to do more research to fill in the details. As such, it is assumed that the reader
knows how to use search engines and Python’s excellent online documentation.

Many of the more advanced recipes will reward the reader’s patience with a much greater
insight into how Python actually works under the covers. You will learn new tricks and
techniques that can be applied to your own code.

Who This Book Is Not For

This is not a book designed for beginners trying to learn Python for the first time. In
fact, italready assumes that you know the basics that might be taught in a Python tutorial
or more introductory book. This book is also not designed to serve as a quick reference
manual (e.g., quickly looking up the functions in a specific module). Instead, the book
aims to focus on specific programming topics, show possible solutions, and serve as a
springboard for jumping into more advanced material you might find online or in a
reference.

xii | Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

)
'

This icon signifies a tip, suggestion, or general note.
TS
oY

<

\
0

This icon indicates a warning or caution.

Online Code Examples

Almost all of the code examples in this book are available online at http://github.com/
dabeaz/python-cookbook. The authors welcome bug fixes, improvements, and com-
ments.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount

Preface | xiii

of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Python Cookbook, 3rd edition, by David
Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian Jones,
978-1-449-34037-7.

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers ex-
Safa Il pert content in both book and video form from the world’s leading
BooksOntine authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil ly/python_cookbook_3e.

xiv | Preface

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: hitp://www.youtube.com/oreillymedia

Acknowledgments

We would like to acknowledge the technical reviewers, Jake Vanderplas, Robert Kern,
and Andrea Crotti, for their very helpful comments, as well as the general Python com-
munity for their support and encouragement. We would also like to thank the editors
of the prior edition, Alex Martelli, Anna Ravenscroft, and David Ascher. Although this
edition is newly written, the previous edition provided an initial framework for selecting
the topics and recipes of interest. Last, but not least, we would like to thank readers of
the early release editions for their comments and suggestions for improvement.

David Beazley’s Acknowledgments

Writing a book is no small task. As such, I would like to thank my wife Paula and my
two boys for their patience and support during this project. Much of the material in this
book was derived from content I developed teaching Python-related training classes
over the last six years. Thus, I'd like to thank all of the students who have taken my
courses and ultimately made this book possible. I'd also like to thank Ned Batchelder,
Travis Oliphant, Peter Wang, Brian Van de Ven, Hugo Shi, Raymond Hettinger, Michael
Foord, and Daniel Klein for traveling to the four corners of the world to teach these
courses while I stayed home in Chicago to work on this project. Meghan Blanchette and
Rachel Roumeliotis of O’Reilly were also instrumental in seeing this project through to
completion despite the drama of several false starts and unforeseen delays. Last, but not
least, I'd like to thank the Python community for their continued support and putting
up with my flights of diabolical fancy.

David M. Beazley
http://www.dabeaz.com

https://twitter.com/dabeaz

Preface | xv

Brian Jones’ Acknowledgments

I would like to thank both my coauthor, David Beazley, as well as Meghan Blanchette
and Rachel Roumeliotis of O’'Reilly, for working with me on this project. I would also
like to thank my amazing wife, Natasha, for her patience and encouragement in this
project, and her support in all of my ambitions. Most of all, I'd like to thank the Python
community at large. Though I have contributed to the support of various open source
projects, languages, clubs, and the like, no work has been so gratifying and rewarding
as that which has been in the service of the Python community.

Brian K. Jones
http://www.protocolostomy.com

https://twitter.com/bkjones

xvi | Preface

1. Data Structures and Algorithms

1.1.
1.2,
1:3:
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

1.10.
1.1,

1.12

1.13,
1.14.
1.15:
1.16.
1.17-
1.18.
1-19:
1.20.

2. Strings and Text

2:1
2.2,
2.3,
2.4.

Table of Contents

Unpacking a Sequence into Separate Variables

Unpacking Elements from Iterables of Arbitrary Length

Keeping the Last N Items

Finding the Largest or Smallest N Items

Implementing a Priority Queue

Mapping Keys to Multiple Values in a Dictionary

Keeping Dictionaries in Order

Calculating with Dictionaries

Finding Commonalities in Two Dictionaries

Removing Duplicates from a Sequence while Maintaining Order
Naming a Slice

. Determining the Most Frequently Occurring Items in a Sequence
Sorting a List of Dictionaries by a Common Key

Sorting Objects Without Native Comparison Support

Grouping Records Together Based on a Field

Filtering Sequence Elements

Extracting a Subset of a Dictionary

Mapping Names to Sequence Elements

Transforming and Reducing Data at the Same Time

Combining Multiple Mappings into a Single Mapping

Splitting Strings on Any of Multiple Delimiters
Matching Text at the Start or End of a String
Matching Strings Using Shell Wildcard Patterns
Matching and Searching for Text Patterns

N U W=

12
13
15
17
18
20
21
23
24
26
28
29
32
33

37
37
38
40
42

2.5. Searching and Replacing Text

2.6. Searching and Replacing Case-Insensitive Text

2.7. Specifying a Regular Expression for the Shortest Match
2.8. Writing a Regular Expression for Multiline Patterns

2.9. Normalizing Unicode Text to a Standard Representation
2.10. Working with Unicode Characters in Regular Expressions
2.11. Stripping Unwanted Characters from Strings

2.12. Sanitizing and Cleaning Up Text

2.13. Aligning Text Strings

2.14. Combining and Concatenating Strings

2.15. Interpolating Variables in Strings

2.16. Reformatting Text to a Fixed Number of Columns
2.17. Handling HTML and XML Entities in Text

2.18. Tokenizing Text

2.19. Writing a Simple Recursive Descent Parser

2.20. Performing Text Operations on Byte Strings

NUmbers, Dates, AN TIMES: oo oo s 555 w15 scors omais o706 w56 o650 oias wisis s 5o o 58 61558 wioi som's o
3.1. Rounding Numerical Values

3.2. Performing Accurate Decimal Calculations

3.3. Formatting Numbers for Output

3.4. Working with Binary, Octal, and Hexadecimal Integers

3.5. Packing and Unpacking Large Integers from Bytes

3.6. Performing Complex-Valued Math

3.7. Working with Infinity and NaNs

3.8. Calculating with Fractions

3.9. Calculating with Large Numerical Arrays

3.10. Performing Matrix and Linear Algebra Calculations

3.11. Picking Things at Random

3.12. Converting Days to Seconds, and Other Basic Time Conversions
3.13. Determining Last Friday’s Date

3.14. Finding the Date Range for the Current Month

3.15. Converting Strings into Datetimes

3.16. Manipulating Dates Involving Time Zones

Iterators and GENErators.c.ceveeasisccassvssseassssnssssssasssnnannss
4.1. Manually Consuming an Iterator

4.2. Delegating Iteration

4.3. Creating New Iteration Patterns with Generators

4.4. Implementing the Iterator Protocol

4.5. Iterating in Reverse

4.6. Defining Generator Functions with Extra State

45
46
47
48
50
52
53
54
57
58
61
64
65
66
69
78

83
83
84
87
89
90
92
94
96
97
100
102
104
106
107
109
110

113
113
114
115
117
119
120

iv

| Table of Contents

4.7. Taking a Slice of an Iterator

4.8. Skipping the First Part of an Iterable

4.9. Tterating Over All Possible Combinations or Permutations
4.10. Tterating Over the Index-Value Pairs of a Sequence

4.11. Tterating Over Multiple Sequences Simultaneously

4.12. Tterating on Items in Separate Containers

4.13. Creating Data Processing Pipelines

4.14. Flattening a Nested Sequence

4.15. Tterating in Sorted Order Over Merged Sorted Iterables
4.16. Replacing Infinite while Loops with an Iterator

I =TT e e

5.1. Reading and Writing Text Data

5.2. Printing to a File

5.3. Printing with a Different Separator or Line Ending
5.4. Reading and Writing Binary Data

5.5. Writing to a File That Doesn’t Already Exist

5.6. Performing I/O Operations on a String

5.7. Reading and Writing Compressed Datafiles

5.8. Iterating Over Fixed-Sized Records

5.9. Reading Binary Data into a Mutable Buffer

5.10. Memory Mapping Binary Files

5.11. Manipulating Pathnames

5.12. Testing for the Existence of a File

5.13. Getting a Directory Listing

5.14. Bypassing Filename Encoding

5.15. Printing Bad Filenames

5.16. Adding or Changing the Encoding of an Already Open File
5.17. Writing Bytes to a Text File

5.18. Wrapping an Existing File Descriptor As a File Object
5.19. Making Temporary Files and Directories

5.20. Communicating with Serial Ports

5.21. Serializing Python Objects

. Data Encoding and Processing.ccovviiniiiiiniiiiiiiiiiiinieniinann.

6.1. Reading and Writing CSV Data

6.2. Reading and Writing JSON Data

6.3. Parsing Simple XML Data

6.4. Parsing Huge XML Files Incrementally

6.5. Turning a Dictionary into XML

6.6. Parsing, Modifying, and Rewriting XML
6.7. Parsing XML Documents with Namespaces

122
123
125
127
129
131
132
135
136
138

141
141
144
144
145
147
148
149
151
152
153
156
157
158
160
161
163
165
166
167
170
171

175
175
179
183
186
189
191
193

Table of Contents

| v

6.8. Interacting with a Relational Database

6.9. Decoding and Encoding Hexadecimal Digits

6.10. Decoding and Encoding Base64

6.11. Reading and Writing Binary Arrays of Structures
6.12. Reading Nested and Variable-Sized Binary Structures
6.13. Summarizing Data and Performing Statistics

PUNCRIONS, . s 56 50 56 € 524 5 0 momn meme o s ot Wi w6 o 0 B B

7.1. Writing Functions That Accept Any Number of Arguments
7.2. Writing Functions That Only Accept Keyword Arguments
7.3. Attaching Informational Metadata to Function Arguments
7.4. Returning Multiple Values from a Function

7.5. Defining Functions with Default Arguments

7.6. Defining Anonymous or Inline Functions

7.7. Capturing Variables in Anonymous Functions

7.8. Making an N-Argument Callable Work As a Callable with Fewer

Arguments

7.9. Replacing Single Method Classes with Functions
7.10. Carrying Extra State with Callback Functions
7.11. Inlining Callback Functions

7.12. Accessing Variables Defined Inside a Closure

Classes and Objects.ovuueeeinne et eee e,

8.1. Changing the String Representation of Instances

8.2. Customizing String Formatting

8.3. Making Objects Support the Context-Management Protocol
8.4. Saving Memory When Creating a Large Number of Instances
8.5. Encapsulating Names in a Class

8.6. Creating Managed Attributes

8.7. Calling a Method on a Parent Class

8.8. Extending a Property in a Subclass

8.9. Creating a New Kind of Class or Instance Attribute

8.10. Using Lazily Computed Properties

8.11. Simplifying the Initialization of Data Structures

8.12. Defining an Interface or Abstract Base Class

8.13. Implementing a Data Model or Type System

8.14. Implementing Custom Containers

8.15. Delegating Attribute Access

8.16. Defining More Than One Constructor in a Class

8.17. Creating an Instance Without Invoking init

8.18. Extending Classes with Mixins

8.19. Implementing Stateful Objects or State Machines

195
197
199
199
203
214

217
217
219
220
221
222
224
225

227
231
232
235
238

243
243
245
246
248
250
251
256
260
264
267
270
274
277
283
287
291
293
294
299

vi

| Table of Contents

10.

8.20. Calling a Method on an Object Given the Name As a String
8.21. Implementing the Visitor Pattern

8.22. Implementing the Visitor Pattern Without Recursion

8.23. Managing Memory in Cyclic Data Structures

8.24. Making Classes Support Comparison Operations

8.25. Creating Cached Instances

i MeTAPrOGraAMIMING s oo o o o6 5 wis s wio s o108 100 510 550 0 w5 0 818 Wi w5m 4 a1 56 3 0l i3 i

9.1. Putting a Wrapper Around a Function

9.2. Preserving Function Metadata When Writing Decorators
9.3. Unwrapping a Decorator

9.4. Defining a Decorator That Takes Arguments

9.5. Defining a Decorator with User Adjustable Attributes

9.6. Defining a Decorator That Takes an Optional Argument
9.7. Enforcing Type Checking on a Function Using a Decorator
9.8. Defining Decorators As Part of a Class

9.9. Defining Decorators As Classes

9.10. Applying Decorators to Class and Static Methods

9.11. Writing Decorators That Add Arguments to Wrapped Functions
9.12. Using Decorators to Patch Class Definitions

9.13. Using a Metaclass to Control Instance Creation

9.14. Capturing Class Attribute Definition Order

9.15. Defining a Metaclass That Takes Optional Arguments
9.16. Enforcing an Argument Signature on *args and **kwargs
9.17. Enforcing Coding Conventions in Classes

9.18. Defining Classes Programmatically

9.19. Initializing Class Members at Definition Time

9.20. Implementing Multiple Dispatch with Function Annotations
9.21. Avoiding Repetitive Property Methods

9.22. Defining Context Managers the Easy Way

9.23. Executing Code with Local Side Effects

9.24. Parsing and Analyzing Python Source

9.25. Disassembling Python Byte Code

Modisles ANA PACKBGES. . i« v o wn win s 650 w056 5 650 ek 5 6w & im0 & 0 5 08 i w

10.1. Making a Hierarchical Package of Modules

10.2. Controlling the Import of Everything

10.3. Importing Package Submodules Using Relative Names

10.4. Splitting a Module into Multiple Files

10.5. Making Separate Directories of Code Import Under a Common
Namespace

10.6. Reloading Modules

305
306
311
317
321
323

329
329
331
333
334
336
339
341
345
347
350
352
355
356
359
362
364
367
370
374
376
382
384
386
388
392

397
397
398
399
401

404
406

Table of Contents

vii

11

12.

13. Utility Scripting and System Administration

10.7. Making a Directory or Zip File Runnable As a Main Script

10.8. Reading Datafiles Within a Package

10.9. Adding Directories to sys.path

10.10. Importing Modules Using a Name Given in a String

10.11. Loading Modules from a Remote Machine Using Import Hooks
10.12. Patching Modules on Import

10.13. Installing Packages Just for Yourself

10.14. Creating a New Python Environment

10.15. Distributing Packages

Network and Web Programiming. .. -« s s« o sis s sosi s i ssios 55 saiss

11.1. Interacting with HTTP Services As a Client

11.2. Creating a TCP Server

11.3. Creating a UDP Server

11.4. Generating a Range of IP Addresses from a CIDR Address
11.5. Creating a Simple REST-Based Interface

11.6. Implementing a Simple Remote Procedure Call with XML-RPC
11.7. Communicating Simply Between Interpreters

11.8. Implementing Remote Procedure Calls

11.9. Authenticating Clients Simply

11.10. Adding SSL to Network Services

11.11. Passing a Socket File Descriptor Between Processes
11.12. Understanding Event-Driven I/O

11.13. Sending and Receiving Large Arrays

LT 111711 T

12.1. Starting and Stopping Threads

12.2. Determining If a Thread Has Started

12.3. Communicating Between Threads

12.4. Locking Critical Sections

12.5. Locking with Deadlock Avoidance

12.6. Storing Thread-Specific State

12.7. Creating a Thread Pool

12.8. Performing Simple Parallel Programming

12.9. Dealing with the GIL (and How to Stop Worrying About It)
12.10. Defining an Actor Task

12.11. Implementing Publish/Subscribe Messaging
12.12. Using Generators As an Alternative to Threads
12.13. Polling Multiple Thread Queues

12.14. Launching a Daemon Process on Unix

407
408
409
411
412
428
431
432
433

437
437
441
445
447
449
454
456
458
461
464
470
475
481

485
485
488
491
497
500
504
505
509
513
516
520
524
531
534

viii

| Table of Contents

13.1. Accepting Script Input via Redirection, Pipes, or Input Files
13.2. Terminating a Program with an Error Message

13.3. Parsing Command-Line Options

13.4. Prompting for a Password at Runtime

13.5. Getting the Terminal Size

13.6. Executing an External Command and Getting Its Output
13.7. Copying or Moving Files and Directories

13.8. Creating and Unpacking Archives

13.9. Finding Files by Name

13.10. Reading Configuration Files

13.11. Adding Logging to Simple Scripts

13.12. Adding Logging to Libraries

13.13. Making a Stopwatch Timer

13.14. Putting Limits on Memory and CPU Usage

13.15. Launching a Web Browser

14. Testing, Debugging, and EXCeptions.covuviniiiiiiiiieneinnennnnnnn.

15.

14.1. Testing Output Sent to stdout

14.2. Patching Objects in Unit Tests

14.3. Testing for Exceptional Conditions in Unit Tests
14.4. Logging Test Output to a File

14.5. Skipping or Anticipating Test Failures

14.6. Handling Multiple Exceptions

14.7. Catching All Exceptions

14.8. Creating Custom Exceptions

14.9. Raising an Exception in Response to Another Exception
14.10. Reraising the Last Exception

14.11. Issuing Warning Messages

14.12. Debugging Basic Program Crashes

14.13. Profiling and Timing Your Program

14.14. Making Your Programs Run Faster

CEXECISIONS, & i 5om ¢ sos o 5 0 5 p 5 51w i w0 o 350 0 i s 1 0 3 913 3 5 S 00 9280 00 4
15.1. Accessing C Code Using ctypes

15.2. Writing a Simple C Extension Module

15.3. Writing an Extension Function That Operates on Arrays

15.4. Managing Opaque Pointers in C Extension Modules

15.5. Defining and Exporting C APIs from Extension Modules

15.6. Calling Python from C

15.7. Releasing the GIL in C Extensions

15.8. Mixing Threads from C and Python

15.9. Wrapping C Code with Swig

539
540
541
544
545
545
547
549
550
552
555
558
559
561
563

565
565
567
570
572
573
574
576
578
580
582
583
585
587
590

597
599
605
609
612
614
619
625
625
627

Table of Contents

15.10.
15.14.
15.12;
15:13:
15.14.
15:15;
15.16.
15.17.
15.18.
15.19.
. Consuming an Iterable from C
15.21.

15.20

A. Further Reading

x | Tableof Contents

Wrapping Existing C Code with Cython

Using Cython to Write High-Performance Array Operations
Turning a Function Pointer into a Callable

Passing NULL-Terminated Strings to C Libraries

Passing Unicode Strings to C Libraries

Converting C Strings to Python

Working with C Strings of Dubious Encoding

Passing Filenames to C Extensions

Passing Open Files to C Extensions

Reading File-Like Objects from C

Diagnosing Segmentation Faults

--

632
638
643
644
648
653
654
657
658
659
662
663

