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Preface

Since 2008, the Python world has been watching the slow evolution of Python 3. It was
always known that the adoption of Python 3 would likely take a long time. In fact, even
at the time of this writing (2013), most working Python programmers continue to use
Python 2 in production. A lot has been made about the fact that Python 3 is not backward
compatible with past versions. To be sure, backward compatibility is an issue for anyone
with an existing code base. However, if you shift your view toward the future, you'll find
that Python 3 offers much more than meets the eye.

Just as Python 3 is about the future, this edition of the Python Cookbook represents a
major change over past editions. First and foremost, this is meant to be a very forward
looking book. All of the recipes have been written and tested with Python 3.3 without
regard to past Python versions or the “old way” of doing things. In fact, many of the
recipes will only work with Python 3.3 and above. Doing so may be a calculated risk,
but the ultimate goal is to write a book of recipes based on the most modern tools and
idioms possible. It is hoped that the recipes can serve as a guide for people writing new
code in Python 3 or those who hope to modernize existing code.

Needless to say, writing a book of recipes in this style presents a certain editorial chal-
lenge. An online search for Python recipes returns literally thousands of useful recipes
on sites such as ActiveState’s Python recipes or Stack Overflow. However, most of these
recipes are steeped in history and the past. Besides being written almost exclusively for
Python 2, they often contain workarounds and hacks related to differences between old
versions of Python (e.g., version 2.3 versus 2.4). Moreover, they often use outdated
techniques that have simply become a built-in feature of Python 3.3. Finding recipes
exclusively focused on Python 3 can be a bit more difficult.

Rather than attempting to seek out Python 3-specific recipes, the topics of this book are
merely inspired by existing code and techniques. Using these ideas as a springboard,
the writing is an original work that has been deliberately written with the most modern
Python programming techniques possible. Thus, it can serve as a reference for anyone
who wants to write their code in a modern style. '
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In choosing which recipes to include, there is a certain realization that it is simply
impossible to write a book that covers every possible thing that someone might do with
Python. Thus, a priority has been given to topics that focus on the core Python language
as well as tasks that are common to a wide variety of application domains. In addition,
many of the recipes aim to illustrate features that are new to Python 3 and more likely
to be unknown to even experienced programmers using older versions. There is also a
certain preference to recipes that illustrate a generally applicable programming tech-
nique (i.e., programming patterns) as opposed to those that narrowly try to address a
very specific practical problem. Although certain third-party packages get coverage, a
majority of the recipes focus on the core language and standard library.

Who This Book Is For

This book is aimed at more experienced Python programmers who are looking to
deepen their understanding of the language and modern programming idioms. Much
of the material focuses on some of the more advanced techniques used by libraries,
frameworks, and applications. Throughout the book, the recipes generally assume that
the reader already has the necessary background to understand the topic at hand (e.g.,
general knowledge of computer science, data structures, complexity, systems program-
ming, concurrency, C programming, etc.). Moreover, the recipes are often just skeletons
that aim to provide essential information for getting started, but which require the
reader to do more research to fill in the details. As such, it is assumed that the reader
knows how to use search engines and Python’s excellent online documentation.

Many of the more advanced recipes will reward the reader’s patience with a much greater
insight into how Python actually works under the covers. You will learn new tricks and
techniques that can be applied to your own code.

Who This Book Is Not For

This is not a book designed for beginners trying to learn Python for the first time. In
fact, italready assumes that you know the basics that might be taught in a Python tutorial
or more introductory book. This book is also not designed to serve as a quick reference
manual (e.g., quickly looking up the functions in a specific module). Instead, the book
aims to focus on specific programming topics, show possible solutions, and serve as a
springboard for jumping into more advanced material you might find online or in a
reference.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

)
'

This icon signifies a tip, suggestion, or general note.
TS
oY

<

\
0

This icon indicates a warning or caution.

Online Code Examples

Almost all of the code examples in this book are available online at http://github.com/
dabeaz/python-cookbook. The authors welcome bug fixes, improvements, and com-
ments.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
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of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Python Cookbook, 3rd edition, by David
Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian Jones,
978-1-449-34037-7.

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers ex-
Safa Il pert content in both book and video form from the world’s leading
BooksOntine  authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil ly/python_cookbook_3e.
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To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: hitp://www.youtube.com/oreillymedia
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