C Programming
Language

hERFERARKRE M R

Cifi & Lk 55

C Programming Language

)
ST

73
Rz

i

P EBFEEBAR R AL

R EE T

AHEAME TR 2R R mEE S —Ciis. 2 Bam 9 mmK
Fo 1 EEENGITAIUR B AR R TR E R 2 EIEAN R RN
B RR RS ARS8 3 A CIR S M EA MR, afigmee ik Hui
KRB FIRAGH 4 BAH 3 LS, GIEI0UF SRR AR 56 5 BN RS K
IEFH 5 56 6 AR R BB RN 5 7 AT AABUB A BIREHHES 5 8 BAALS
AR 58 O BN UL R L A5 B R B4 T B2 b i 2 R B SR A
HIBH,

AP AT B SRR AR A BRI AT N KRR TAEF RIS E 5.

BB ER S B (CIP) #iE

CIlE R BGH/ PR, TR IR R im g . — L. P ERABoR KA AL,
2014. 7
ISBN 978-7-312-03436-7

LG L OF - OF Ot @R . CiEF—BFRIT—3E V. H31

o [E IR A E 548 CIP B 7 (2014) 58 110624 5

HAR H EREROR K2 it
ERUE AL MK 96 5 ,230026
http://press. ustc. edu. cn

ENRI LR mEEN S5 A RAF

17 PEBFEEEARKFE B M

%% «EHERE

FA 710 mm X960 mm 1/16

Ense 8.5

FH 166 T

Mk 201487 HS 1M

EMk 2014 4E 7 A% 1 KENRI

EM 16.00 JC

Preface

Until now, C programming language is regarded as one of most common languages
in the world. Its properties include simple expressions, smooth control flows and
data structures, a rich set of operators, etc. Generally, languages are classified
two categories: high-level language and low-level language. But C language is
called “middle-level” language. It means that C language not only possess well
structure in high-level language, but also has low layer driver in low-level
language. It is less restricted, powerful, and therefore more convenient and effective.

C language was designed firstly by Dennis Ritchie in 1973. From then, it
spreads all over the world from its original place—Bell Laboratory. It has been a
public language for all of programmers in the world. It has disseminated into China
for many years and translated into many kinds of Chinese edition. But because of
differences between English and Chinese, many readers often feel confused and
uncomfortable in understanding.

In order to catch up the international advanced level of education, the Ministry
of Education proposed a policy called “bilingual teaching” ten years ago. It greatly
facilitates and promotes the use of original materials. However, from our teach-
ing experiences for many years, we find that there are some problems. For one
example, the contents in original book are excessive so that it is no time for
students to read completely. For another example, the profound concept and text
description make students understanding difficultly. So, for sake of rapid increas-
ing the students’ standard, as “middleware”, we write this book.

This book has nine chapters and an appendix. In Chapter 1, we simply intro-
duce the concepts of computer hardware and software, especially the importance
of software engineering. In Chapter 2, we tell the readers how to solve a problem
using the computer soul—algorithm. The basic knowledge about program struc-
ture, data type, and expression is described in Chapter 3. The three basic programming
structures including sequence, selection and circulation are explained in Chapter
4. A very important concept—array is narrated in Chapter 5. Function is the
characteristic of C language, because C is a functional language. So, in Chapter 6,

Il Cis L3k

we discuss the function concept for readers. Pointer is a major feature of C language.
We interpret it thoroughly in Chapter 7. In Chapter 8, we explain the structure
design for a program. The last chapter that is Chapter 9 will describe emphatically
the concept about file. Of course, in order to study, grasp and apply C language
for programmers, we write an appendix so that the programmer can rapidly
search many functionsin kinds of libraries.

This book is written for students in connection with bilingual teaching. During the
writing, we have always obtained many more support and encouragement from
teachers and teaching assistants in C course group including Jia Boqgi, Gu Weibin,
Yin Long, Zen Lingzi, etc. Here, we express our sincere thanks to them.

At last, without a doubt, there are some wrong in this book because of our

knowledge level. We sincerely accept your criticism and correction of our readers.

Yin Dong, Fang Yi, Xu Jun, Zhou Yuanyuan
2014. 02 in Hefei

il

]

AN CEFHANRER ERAA T EN SR ET L —, CAEE
BHRARX KGN EHA P REEN FEWEERELER R, AY, 550 %
AR BREEPRAEE, MCETTH PR E L EEREL CETARE
HEREEHNEN THAAMKEEEWRER S ik, TR D ik,
Bl Ao 7 B A K,

C & 5 &4 & # Dennis Ritchie £ 1973 & itty, NI #E,CES AR L
FH— NREBREEBIL R, A AR LA BARNARES, ©4E
TEHEHSET MEERSANA T XMA, AT, M TFPE XN, F 25
FEEMERIAFAR LM,

ATHRERFRERBEAT, RTH 10 £MEH TSR E"HE, R A M
RAFBHTRBREMGER ., R RESENHEEH, RIOTRIHT —)
Ao B, RIRHF WAL S SRF A4 Tk RS WA AR X Rk 4
TEMEE, FH, h T RERAFEEMKT, R F RS, RIOTBE T S,

AFEAFEIEWR, &1 EMENG T HENK FERA, SRR R T
BWERM, & 2FHROTAFH IS ——H Rk M, %3 SHRAL
BEEH BERE RERER AR, 4 ESRBIF RBFERIAHEAR
BEM. ROFHREFEENMA— B4, $6 EHAAK ERLCES
R CETRERAEE. BT HATHAHH HA4ECETWEEH/E, £ 8
ENBEMERS. IO FHEHRGEXBWMA, BE, W FELT LB
RACEE MEARBARMEEREXE B S R BEA,

AFRARRERFNFELTREN, AR EEET CETREN S
MARBBAL, BB R TR PR YR TFEWAD CHRER £ W, AR

B, A TRMNW DR THR, B EERREN B4, RiES K%
#IF A IE,

FER FH KB RBiziz
2014 # 2 A F 452

Contents

Prefaee - sesnsesss gt sssniiessanions s sravmsnnasifiniaite s i o GBI Y. bl I
B e 0icckcnaninsiticns ssspnsersors vosins nevens cacris Kamabs o evasanans f s fxmoansume o pole il
Chapter 1 Fundatenlals - -« otecorssiimssmmsnsssriion B BAIMNMRL - 2 .0 - 1
1.1 A Simple Structure of Computer Hardware «+=++eeeeerreereenreeennanns 1
1.2 The Computer Soul—Software «+»+-esssssssnsamsessesrasiitoio o 3
1.3 C Language and Its Integrated Development «e+seeererceiieiiiiiiiii, 3
1.4 Software Engineering +«tcseseseeesscerererseecssonssonnbsranstonsssineecsrisoes 5
Chapter 2 Problem Solving Method -+---+-+++ o eeeerermrieeeerrrrruineseeeeennnnnns 8
2.1 AlGOrithms cectsessacessisirncrnmmminsrersarersermsssseverdd 0 4 T3igA¢ 8
2.2 Programming Idioms and Paradigms «+++--s+eeveeseesseesasseenseenens 9
2.3 Programming Your First Program «+«+e«sseeeestuiiisioescaiiiaiinnennnninn, 11
2.4 Programming Errors and Debugging --+-+-++++sssesseereruuuuuiensenenninn 14
Chapter 3 Program Structure, Data Types, and Expressions ---eeeeeeen 16
3.1 Program SErUCLUIE «e+eeteseesenseeenernenernesnenreecneenennsnsseensensenennes 16
3.2 Data Types oo S R SN N B Izu L 8 1oigs 19
3. 3 TEXDTCHSIONSG veceseesvansnnerencssinrsataisriesiis o0t 7l ool £ 8. 20
Chapter 4 Program Control-Decisions and Looping «-+-eeeevenenenn eeeesenens 29
T T IRErOAUCHOR. voeevs i S BINE bats. 2neinicd L A8, 29
4. 2" "The i f Statement -+ 0t ARHA0IG 3RO A3 RTIG ... 5.5, 32
4.3 The Loop Control Structure ' -+ e+ Ao zuell 0.8, 39
4.4 The case CONtrol StrUCLUTE «++«+eeeereseenrenrerneeneaneeneenseneeneenennenns 43

4.5 Samples sreerrreteiiniiii e 45

Vi CiEF R
Chapter 5 Arrays .. 48
5.1 Defining an ATTay «eeeeerersee 48

5.2 Initializing Arrays ----sesssorstssaniotintentieiiiemintinunsunenaensesaeanaans 50

5.3 Multidimensional Arrays .. 52

5.4 Variable—length Array ... 55
Chapter 6 Functions «occocoeereremrmm e 58
6.1 . Defining a functian , «sssessssss sisgsssssmssinuanessans shass sszsss sosans asason ass 58

8.0 Phramnelons sesss s iassis sosber s an BRI RS GAES SRS SOVE s sH AR 60

6.3 Local and Global-Variables s«esssssssistocsosoncsscosscosoocassessavessnsnnvon 61

8.4 Nutostatic snd Statio W arahbis Wies ot g i saiqensbssss asvnssonses ase 63

6.5 Calling FUNCLIONS t+reestsrsrssrtaseststssitstsassassossnsscasesssossassosensnnns 65

6.6 REiTaive Flhotions coresmitssesorantetnssusesssssses sesnrs smanss sassosbie e 67
Chapter 7 PoOINters «+-«covevrereentie e 70
7 1. Pointer and Address vess sesmps sssnus g e s sasmes somgnssiggs sazss ios 70

7.2 Pointer Manipulation in C «esssssspssrsessessssqgsssessessssssntassyssnsanges 79

7.3 Passing Parameters by Reference «+++++eeeeeeseemmemmmnnn crcinca iy e g s 77

7.4 Pointers and Arrays sseseeseeesssessseseceibotemumminnieisi. 81

7.5 Dynamic AllOcation «ee+sressseresseramnmiiiiiiiiii s 88
Chapter 8 Structures «--coccoreeeeereaeentiiiiiiiiiiiiiiiiiiiiiiiiiiie, 95
8.1 Basic Knowledge «eeeeeeeeessssseseininiiiiiiiiiiiiiiiiiii 95

8 9 P s iinn Rl ST, 55+ A5fon s annbs =a Shbsh SEoHF SRR SFHR S AT SR 88 97

8, 3. Arrays. of StrUCHUIES -y ssrr e sesssssegns yosasesssagesseesesssspposagissassns 98

8. 4 Pointers afid SIEHOHALes: seoersssrrevssasssrssansrsiossarrsrsamsens ropans popes 99

8.5 Structures Containing Structures «««=+ss=ssesssseresersamrsnaeemnnaennnns 100

8.6 Using typedef Keyword eeereeseeseeseeasuimiiiiii.. 102

Contents VI

Chapter 0 FIles »oseuoss somsusumans ssmesssi53hs spsans sasmensoressvnmnsonsiiogumsiraieoiig 106
9.1 "Text Files s satons ool maitants st st dees e sisabomab o sk soms G ol L8 107
9.2 Using Files O i/ Mt e ceann L AMASRRA DR LA o s 108
9.3 Character, Line-oriented, Formatted I/Q «++cceeererenseenirainnninnn. 112

Appendix ANSI 10) 20 [Tl e A S SRR S Sl R L b e e o 118

Chapter 1 Fundamentals

It is nearly 70 years from the first birth of computer to present. Computer

brings us huge change in our society and life. It has become one necessary tool of
our work and life. So the studying and understanding of computer science is very

important for us.

1.1 A Simple Structure of Computer Hardware

In these years, the development of computer experiences several gaps.
Personal computer (PC) as example, it has been 8086, 80286, 80386,...,PV,
dual-core, etc. PC develops very rapidly. However, it still composes of two
parts: one main computer, another peripheral. Main computer includes Mother-
board, Center Process Unit (CPU), Main Memory, Adapters, Hard Disk, DVD
Player, etc. Peripheral includes Mouse, Keyboard, Monitor, Printer, Scanner,
Digitizer, Plotter, etc. Fig. 1.1 is a model of PC. Fig. 1. 2 is an instance of each

part. Fig. 1. 3 is another kind of computer whose name is notebook computer.

Fig.1.1 Model of PC

‘2 CiEH &I HE

(¢) Main memory

(e) Hard Disk (f) DVD Player

E R R e o] b e

(g) Mouse (h) Keyboard
(j) Printer (k) Scanner (1) Digitizer (m) Plotter

Fig.1.2 Instance for Each Part

Fig.1.3 Notebook Computer

Chapter 1 Fundamentals o e

1.2 The Computer Soul—Software

Software divides into two parts. One is called System Software such as Win 7,
Windows XP, UNIX, and Linux. Another is called Application Software such as
Microsoft Office, WinRAR, and C Programming Language. System Software is a
system which controls and coordinates the computer and peripherals. It supparts
the development and operation of Application Software. Application Software is
all kinds of programming languages used by user and its application program
package programmed by language. Let us emphatically talk about programming
software as follows.

Computer programming language includes low-level language and high-level
language. Low-level language like machine language, Macro Assembler LLanguage
can directly operate those hardwares. But these languages are rarely used in recent
years because of inconvenient program writing. High-level language including
FORTRAN, BASIC, Pascal, and Lisp is current main programming tool. In this
text, you will learn how to use the C programming language.

In fact, you can select any programming language to program an application
software production. It all depends on your preferences. Because each of pro-
gramming language has its own characteristics. There is no good or bad lan-
guage, but which is more appropriate. Because of having low-level and high-level
programming language characteristics, C programming language has been a crowd
favorite. So C language is also called middle-level language. Please note that the
word “middle-level” means that it has not only an ability to control and operate
those low-level devices and also has good software structure. Good structure is an

important aspect of a programming language.

1.3 C Language and Its Integrated Development

In general, the program in most of programming languages must first be
translated into the low-level machine language appropriate to the computer on
which the program will run. So it has three procedures—compiling, linking, exe-
cuting. It is corresponding to have three kinds of files—source file, object file and

executable file. A file containing program text is called source file. The program

vy CiEH %A

text will be entered into source file by editor. The general process of entering or
changing the contents of a source file is called editing that file. Once you have a
source file, you can use the compiler to translate the source file into a format the
computer can understand directly. The compiler translates the source file into the
second file—object file. This object file contains the actual instructions appropriate
for that computer system. Next, the object file is combined together with other
object files to produce an executable file that can run on the system. These other
object files typically include predefined object files—libraries which contain the
machine language instructions for various operations commonly required by pro-
grams. The process of combing all the individual object files into an executable
file is called linking. Once you have an executable file, you can run it on your

computer. The entire process is illustrated by the diagram shown in Fig. 1. 4.

Source file Object file
#include (stdio.h)
void main (void) 010010101010000010
compiler 101010101010000101
printf(“Hello\n"); 010101010101010000

}

Other object files/

libraries Executable file

010010101010000010

000101010101010011 101010101010000101
010101010101010000

010101010010111000—————>

101010111110001010 000101010101010011
010101010010111000
101010111110001010

Fig.1.4 The Diagram of Entire Process

As Fig. 1. 4, in any case, the only file that contains something we can read is
the source file. The other files contain information intended solely for the
machine. As a programmer, all your work takes place in the context of the
source. You edit it and use compiler to translate it.

Of course, programming languages have their own vocabulary and their own
set of grammatical rules like human languages. These rules make it possible to
determine that certain statements are properly constructed and the others are not.
They are called syntax rules which determine whether a statement is legally

constructed. When you compile a program, the compiler first checks whether

Chapter 1 Fundamentals o F e

your program is syntactically correct. If you don’t comply with the syntactic
rules, the compiler will display an error message. Errors that result from break-
ing these rules are called syntax errors including warning and fatal error. Any
error isn’t allowed to happen. You must re-edit the program to correct the error
until your program is completely right.

But syntax errors can be frustrating, particularly for new programmers.
Although you don’t violate the syntactic rules, your legal program somehow
comes up with incorrect answers or fails to produce answers at all. Why? That’s
because you have made a mistake in the logic of the program which is the type of
mistake called a bug. The process of finding and correcting such mistakes is called
debugging. It is an important part of the programming process. Almost certainly,
your legal program has a bug in it because your program is just suit for some
data. As a programmer, you must constantly find bugs and fix them. Once that
is done, you should find the next bug and fix it. You should always be skeptical

of your own programs and test them as thoroughly as you can.

1.4 Software Engineering

One of the most surprising aspects of software development is that programs
require maintenance. For most programs, the paying to programmers for maintaining
the software after it has been released constitutes above 80 percent of the total
cost. Software requires maintenance for two principal reasons. First, even after
considerable testing, bugs can still survive in the original code. Then, when some
unusual situation arises or a previously unanticipated load occurs, the bug makes
the program fail. Thus, debugging is an essential part of program maintenance.

A reason that makes program maintenance so difficult is that most program-
mers don’t write their programs for the long haul. To them it seems sufficient to
get the program working and then they move on to something else. The discipline
of writing programs that they can be understood and maintained by others is
called software engineering. You are encouraged to write programs that demon-
strate good engineering style.

It is very important that as you write your program, try to imagine how
someone else might feel if called upon to read them two years later. A series of

questions come up. Would your program make sense? Would the program itself

-6 - CHH G HE

indicate to the new reader what you were trying to do? Would it be easy to
change? Or would it seem obscure and convoluted? If you put yourself in the place
of the future maintainer, it will help you to appreciate why good style is critical.

Many novice programmers are disturbed to learn that there is no precise set
of rules you can follow to ensure good programming style. Good software engi-
neering is not a cookbook sort of process. Instead, it is a skill blended with more
than a little bit of ‘artistry. Practice is critical. One learns to write good programs
by writing them, and by reading others, much as one learns to be a novelist.
Good programming requires discipline—the discipline not to cut corners or to
forget about that future maintainer in the rush to complete a project. And good
programming style requires developing an aesthetic sense—a sense of what it

means for a program to be readable and well presented.

éSummary

The purpose of this chapter is to set the stage for learning about computer
science and programming. You have focused on what the programming process
involves and how it relates to the domain of computer science.

The important points introduced in this chapter include:

(1) The physical components of a computer system—the parts you can see
and touch—constitute hardware. Before computer hardware is useful, however,
you must specify a sequence of instructions, or program, that tells the hardware
what to do. Such programs are called software.

(2) Computer science is not so much the science of computers as it is the
science of solving problems using computers.

(3) Programs are typically written using a high-level language that is then
translated by a compiler into the low-level machine language of a specific computer
system.

(4) To run a program, you must first create a source file containing the text
of the program. The compiler translates the source file into an object file, which
is then linked with other object files to create the executable program.

(5) The most serious type of programming error is one that is syntactically
correct but that nonetheless causes the program to produce incorrect results or no

results at all. This type of error, in which your program does not correctly solve

Chapter 1 Fundamentals o« o

a problem because of a mistake in your logic, is called a bug. The process of find-
ing and fixing bugs is called debugging.

(6) Most programs must be updated periodically to correct bugs or to respond to
changes in the demands of the application. This process is called software
" maintenance. Designing a program so that it is easy to maintain is an essential

part of software engineering.

6 Exercises

1. What is the difference between hardware and software?
2. What is meant by the term higher-level language?
3. What is the relationship between a source file and an object file? As a pro-
grammer, which of these files do you work with directly?
4. What is the difference between a syntax error and a bug?
5. What is meant by the term software maintenance?
6. Why is it important to apply good software engineering principles when

you write your programs?

Chapter 2 Problem Solving Method

You have learned about the basic principle in Chapter 1. From now on, you

need to know something about algorithm, idioms, paradigms included, which are

the programmer has to learn by heart.

2.1 Algorithms

Programming is the science of solving problems by computers. Before writ-
ing a program, a programmer must clearly understand the desired result and how
the proposed program will produce it. In this regard, it is useful to realize that a
computer program describes a computational procedure called an algorithm. An
algorithm is a step-by-step sequence of instructions that describes how to perform
a computation,

Firstly, we talk about something familiar to us, something like Gauss-as-a-
child’s story. When the teacher asked children how to add all the consecutive
whole numbers from 1 to 100, only Gauss gave the following explanation: imagine
that wrote the sum twice, once to the right and over backwards on top of each
other, as follows: 2 !
1+2+3+--+98+99+100
100+99-+98+-+++3+2-+41

If we add one column at all given the same (Fig. 2.1): 1+100=101, 2+99
=101,3+98=101, etc. So the answer is 100 times 101 divided by 2 since we

