ZEEIF WEER

The Practice

of Programming
AL e

P

o L6

ina

83

2007

FHERELVEINEROGHES, BYEEBNIIMZEZRE. S4B, Wik,
HeRE, WEEK. Rt RE. RERIESEEE, TR TRFRIREEN. XREER
FFAREZEXHBA, BRIGE, ABEBSNMEEHRSHEACHARERFRD
AB%, HEEMTENE LS EMTENTEEEER, BEARFRITERRENE
MREES.

Original edtion, entitled PRACTICE OF PROGRAMMING, THE, 1st Edition,
020161586X by KERNIGHAN, BRIAN W.; PIKE, ROB, published by Pearson Education, Inc,
publishing as Addison Wesley Professional, Copyright © 1999 by Lucent Technologies.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any information
storage retrieval system, without permission from Pearson Education, Inc.

China Adapted edition published by PEARSON EDUCATION ASIA LTD. and CHINA

MACHINE PRESS Copyright © 2007.
This Adapted edition is manufactured in the People’s Republic of China, and is authorized

for sale only in People’s Republic of China excluding Hong Kong and Macau.

FF5$+H G A Pearson Education (¥4 #H HRER) BtBirE, TREETHYE.

WALAE, @LR,
FHEEMIE JLRTRARMESEAR

AHRNFIZE . EF: 01-2007-1756

ABERME (CIP) ¥ig

BFigit k. WiER / (%) #IZEI (Kernighan, B. W.) &, E3#&iFE —db3(: #l
Ml HARGE, 2007.3

430 The Practice of Programming

ISBN 978-7-111-21127-3

1.8 0.O# - @ O EFEH-%, & V. TP3111
o AR A< B R CIPHR B E (2007) 450334865

PR T IR et BRE 55 k#5228 BREGHS 100037)
HiEHmeE. PR

AL A=W SSENRYT ENR - B B AL R AT R AT
200743 A 1R LR EN R

186mm x 240mm - 30EN3k

EHr: 59.005T

A+, mESH. BH. 87, HEdRTHR%k
AR . (010) 68326294

Preface

Have you ever...

wasted a lot of time coding the wrong algorithm?

used a data structure that was much too complicated?

tested a program but missed an obvious problem?

spent a day looking for a bug you should have found in five minutes?
needed to make a program run three times faster and use less memory?
struggled to move a program from a workstation to a PC or vice versa?
tried to make a modest change in someone else’s program?

rewritten a program because you couldn’t understand it?

Was it fun?

These things happen to programmers all the time. But dealing with such problems
is often harder than it should be because topics like testing, debugging, portability,
performance, design alternatives, and style—the practice of programming—are not
usually the focus of computer science or programming courses. Most programmers
learn them haphazardly as their experience grows, and a few never learn them at all.

In a world of enormous and intricate interfaces, constantly changing tools and lan-
guages and systems, and relentless pressure for more of everything, one can lose sight
of the basic principles—simplicity, clarity, generality—that form the bedrock of good
software. One can also overlook the value of tools and notations that mechanize some
of software creation and thus enlist the computer in its own programming.

Our approach in this book is based on these underlying, interrelated principles,
which apply at all levels of computing. These include simplicity, which keeps pro-
grams short and manageable; clariry, which makes sure they are easy to understand,
for people as well as machines; generality, which means they work well in a broad
range of situations and adapt well as new situations arise; and automation, which lets
the machine do the work for us, freeing us from mundane tasks. By looking at com-
puter programming in a variety of languages, from algorithms and data structures
through design, debugging, testing, and performance improvement, we can illustrate

IV PREFACE

universal engineering concepts that are independent of language, operating system, or
programming paradigm.

This book comes from many years of experience writing and maintaining a lot of
software, teaching programming courses, and working with a wide variety of pro-
grammers. We want to share lessons about practical issues, to pass on insights from
our experience, and to suggest ways for programmers of all levels to be more profi-
cient and productive.

We are writing for several kinds of readers. If you are a student who has taken a
programming course or two and would like to be a better programmer, this book will
expand on some of the topics for which there wasn’t enough time in school. If you
write programs as part of your work, but in support of other activities rather than as
the goal in itself, the information will help you to program more effectively. If you
are a professional programmer who didn’t get enough exposure to such topics in
school or who would like a refresher, or if you are a software manager who wants to
guide your staff in the right direction, the material here should be of value.

We hope that the advice will help you to write better programs. The only prereq-
uisite is that you have done some programming, preferably in C, C++ or Java. Of
course the more experience you have, the easier it will be; nothing can take you from
neophyte to expert in 21 days. Unix and Linux programmers will find some of the
examples more familiar than will those who have used only Windows and Macintosh
systems, but programmers from any environment should discover things to make their
lives easier.

The presentation is organized into nine chapters, each focusing on one major
aspect of programming practice.

Chapter 1 discusses programming style. Good style is so important to good pro-
gramming that we have chosen to cover it first. Well-written programs are better than
badly-written ones—they have fewer errors and are easier to debug and to modify—
so it is important to think about style from the beginning. This chapter also intro-
duces an important theme in good programming, the use of idioms appropriate to the
language being used.

Algorithms and data structures, the topics of Chapter 2, are the core of the com-
puter science curriculum and a major part of programming courses. Since most read-
ers will already be familiar with this material, our treatment is intended as a brief
review of the handful of algorithms and data structures that show up in almost every
program. More complex algorithms and data structures usually evolve from these
building blocks, so one should master the basics.

Chapter 3 describes the design and implementation of a small program that illus-
trates algorithm and data structure issues in a realistic setting. The program is imple-
mented in five languages; comparing the versions shows how the same data structures
are handled in each, and how expressiveness and performance vary across a spectrum
of languages.

PREFACE v

Interfaces between users, programs, and parts of programs are fundamenta! in pro-
gramming and much of the success of software is determined by how well interfaces
are designed and implemented. Chapter 4 shows the evolution of a small library for
parsing a widely used data format. Even though the example is small, it illustrates
many of the concerns of interface design: abstraction, information hiding, resource
management, and error handling.

Much as we try to write programs correctly the first time, bugs, and therefore
debugging, are inevitable. Chapter 5 gives strategies and tactics for systematic and
effective debugging. Among the topics are the signatures of common bugs and the
importance of ‘‘numerology,”” where patterns in debugging output often indicate
where a problem lies.

Testing is an attempt to develop a reasonable assurance that a program is working
correctly and that it stays correct as it evolves. The emphasis in Chapter 6 is on sys-
tematic testing by hand and machine. Boundary condition tests probe at potential
weak spots. Mechanization and test scaffolds make it easy to do extensive testing
with modest effort. Stress tests provide a different kind of testing than typical users
do and ferret out a different class of bugs. :

Computers are so fast and compilers are so good that many programs are fast
enough the day they are written. But others are too slow, or they use too much mem-
ory, or both. Chapter 7 presents an orderly way to approach the task of making a pro-
gram use resources efficiently, so that the program remains correct and sound as it is
made more efficient. .

Chapter 8 covers portability. Successful programs live long enough that their
environment changes, or they must be moved to new systems or new hardware or new
countries. The goal of portability is to reduce the maintenance of a program by mini-
mizing the amount of change necessary to adapt it to a new environment.

Computing is rich in languages, not just the general-purpose ones that we use for
the bulk of programming, but also many specialized languages that focus on narrow
domains. Chapter 9 presents several examples of the importance of notation in com-
puting, and shows how we can use it to simplify programs, to guide implementations,
and even to help us write programs that write programs.

To talk about programming, we have to show a lot of code. Most of the examples
were written expressly for the book, although some small ones were adapted from
other sources. We’ve tried hard to write our own code well, and have tested it on half
a dozen systems directly from the machine-readable text. More information is avail-
able at the web site for The Practice of Programming:

http://tpop.awl.com

The majority of the programs are in C, with a number of examples in C++ and
Java and some brief excursions into scripting languages. At the lowest level, C and
C++ are almost identical and our C programs are valid C++ programs as well. C++
and Java are lineal descendants of C, sharing more than a little of its syntax and much
of its efficiency and expressiveness, while adding richer type systems and libraries.

VIl PREFACE

In our own wbrk, we routinely use all three of these languages, and many others. The
choice of language depends on the problem: operating systems are best written in an
efficient and unrestrictive language like C or C++; quick prototypes are often easiest
in a command interpreter or a scripting language like Awk or Perl; for user interfaces,
Visual Basic and Tcl/Tk are strong contenders, along with Java.

There is an important pedagogical issue in choosing a language for our examples.
Just as no language solves all problems equally well, no single language is best for
presenting all topics. Higher-level languages preempt some design decisions. If we
use a lower-level language, we get to consider alternative answers to the questions; by
exposing more of the details, we can talk about them better. Experience shows that
even when we use the facilities of high-level languages, it’s invaluable to know how
they relate to lower-level issues; without that insight, it’s easy to run into performance
problems and mysterious behavior. So we will often use C for our examples, even
though in practice we might choose something else.

For the most part, however, the lessons are independent of any particular program-
ming language. The choice of data structure is affected by the language at hand; there
may be few options in some languages while others might support a variety of alterna-
tives. But the way to approach making the choice will be the same. The details of
how to test and debug are different in different languages, but strategies and tactics
are similar in all. Most of the techniques for making a program efficient can be
applied in any language.

Whatever language you write in, your task as a programmer is to do the best you
can with the tools at hand. A good programmer can overcome a poor language or a
clumsy operating system, but even a great programming environment will not rescue
a bad programmer. We hope that. no matter what your current experience and skill,
this book will help you to program better and enjoy it more.

We are deeply grateful to friends and colleagues who read drafts of the manuscript
and gave us many helpful comments. Jon Bentley, Russ Cox, John Lakos, John Lin-
derman, Peter Memishian, Ian Lance Taylor, Howard Trickey, and Chris Van Wyk
read the manuscript, some more than once, with exceptional care and thoroughness.
We are indebted to Tom Cargill, Chris Cleeland, Steve Dewhurst, Eric Grosse,
Andrew Herron, Gerard Holzmann, Doug Mcliroy, Paul McNamee, Peter Nelson,
Dennis Ritchie, Rich Stevens, Tom Szymanski, Kentaro Toyama, John Wait, Daniel
C. Wang, Peter Weinberger, Margaret Wright, and Cliff Young for invaluable com-
ments on drafts at various stages. We also appreciate good advice and thoughtful sug-
gestions from Al Aho, Ken Amold, Chuck Bigelow, Joshua Bloch, Bill Coughran,
Bob Flandrena, Renée French, Mark Kernighan, Andy Koenig, Sape Mullender, Evi
Nemeth, Marty Rabinowitz, Mark V. Shaney, Bjarne Stroustrup, Ken Thompson, and
Phil Wadler. Thank you all.

Brian W. Kernighan
Rob Pike

Contents /8%

BB 255
Preface / Hil & III /257
Chapter 1: Style / JlKs 1/261
1.1 Names / &% 3/262
1.2 Expressions and Statements / ;&R FiEH 6/265
1.3 Consistency and Idioms / —ptFn=]18 Fk: 10/268
1.4 Function Macros / g ¥z 17/274
1.5 Magic Numbers / wifists% 19/276
1.6 Comments /iE# 23/279
1.7 Why Bother? / h{gst .0 27/283
Chapter 2: Algorithms and Data Structures / B SEiEEK 29/285
2.1 Searching /#% 30/285
2.2 Sorting /¥ 32/287
2.3 Libraries /g 34/289
2.4 A Java Quicksort / —/JavatisHERE 37/292
2.5 O-Notation / X0ic#: 40/294
2.6 Growing Arrays / wJ#6- 84 41/295
2.7 Lists /3% 44 /298
2.8 Trees /44 50/303
2.9 Hash Tables /%% 55/307
2.10 Summary /gt 58/310
Chapter 3: Design and Implementation / %} 598 61/311
3.1 The Markov Chain Algorithm ; I, sz v k58 Bk 62/312
3.2 Data Structure Alternatives / $E& %k 64/313
3.3 Building the Data Structure in C / 7ZECH & IR 65/314
3.4 Generating Output / 4 i1 69/317

H: FHE T A B T

VIII THE PRACTICE OF PROGRAMMING

3.5 Java /Java 71/320
36 C++ /C++ 76 /323
3.7 Awk and Perl / AwkFPerl 78/325
3.8 Performance /gt 80/327
3.9 Lessons / 2530 82/328
Chapter 4: Interfaces / 51 85/331
4.1 Comma-Separated Values /;8245rRHIE 86/331
4.2 A Prototype Library /4 JE%ip: 87/333
4.3 A Library for Others / 2% A\ % 91/336
4.4 A C++ Implementation / C++S£3 99 /343
4.5 Interface Principles / # & & 103 /347
4.6 Resource Management / {5 &5 106 /349
4.7 Abort, Retry, Fail? /%, &iX5EK 109/351
4.8 User Interfaces / i p R i 113/355
Chapter 5: Debugging / {5 117 /358
5.1 Debuggers / {Est 24 118 /359
5.2 Good Clues, Easy Bugs / 47252, f&i#4s 119/360
5.3 No Clues, Hard Bugs ; fs42:, #ipfstin 123 /363
5.4 Last Resorts / BEMIFE 127 /366
5.5 Non-reproducible Bugs / Rar & ol fsis 130 /369
5.6 Debugging Tools / f{: T A 131 /370
5.7 Other People’s Bugs / #fih A I FEEIR 135 /373
5.8 Summary / /&% 136 /374
Chapter 6: Testing / Big 139 /376
6.1 Test as You Write the Code / 7 4305 £ 7 R, 140 /376
6.2 Systematic Testing / Zg{t iR 145 /381
6.3 Test Automation / fli£ &zt 149 /384
6.4 Test Scaffolds / MiXE 151 /386
6.5 Stress Tests /3 HMIR 155 /389
6.6 Tips for Testing / Wik Fisik 158 /392
6.7 Who Does the Testing? /i Hilix 159 /393
6.8 Testing the Markov Program / Jii& 0, /R o] X B R 160 /394
6.9 Summary / /& 162 /396
Chapter 7: Performance / Y£fE 165 /397
7.1 A Bottleneck / #i 166 /398
7.2 Timing and Profiling / i{mF0 s 171 /402
7.3 Strategies for Speed / fisERE 175 /406
7.4 Tuning the Code / i3 iF% 178 /408

7.5 Space Efficiency /zzja#% 182 /411

7.6
7.7

THE PRACTICE OF PROGRAMMING IX

Estimation / f&it
Summary / /g

Chapter 8: Portability / W[E ¥

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Language /&%

Headers and Libraries / k301
Program Organization / B4 4
Isolation /R

Data Exchange / #ig3%5#

Byte Order / =%

Portability and Upgrade / RIFS#EHERIF 4
Internationalization / EFrfk

Summary / /N

Chapter 9: Notation / id#:

9.1
9.2
93
9.4

9.5
9.6
9.7

Formatting Data / 1B\

Regular Expressions / IERIZFRIER
Programmable Tools / fIHEELE

Interpreters, Compilers, and Virtual Machines
/PR . ARIES AL

Programs that Write Programs / S8R5
Using Macros to Generate Code / F#: 4 giftHS
Compiling on the Fly /&7 4%

Epilogue / J5id
Appendix: Collected Rules /5% 34

184 /413
187/415

189 /417
190/417
196 /423
198/424
202/428
203/429
204/430
207/432
209/434
212/436

215/438
216/438
222/444
228/449

231/452
237/457
240 /459
241/460

247 /465
249 /467

Style

It is an old observation that the best writers sometimes disregard
the rules of rhetoric. When they do so, however, the reader will
usually find in the sentence some compensating merit, attained at
the cost of the violation. Unless he is certain of doing as well, he
will probably do best to follow the rules.

William Strunk and E. B. White, The Elements of Style

This fragment of code comes from a large program written many years ago:

if ((country == SING) || (country == BRNI) ||
(country == POL) |} (country == ITALY))
{

/*
» If the country 1is Singapore, Brunei or Poland
= then the current time is the answer time
* rather than the off hook time.
* Reset answer time and set day of week.

*/

It’s carefully written, formatted, and commented, and the program it comes from
works extremely well; the programmers who created this system are rightly proud of
what they built. But this excerpt is puzzling to the casual reader. What relationship
links Singapore, Brunei, Poland and Italy? Why isn’t Italy mentioned in the cam-
ment? Since the comment and the code differ, one of them must be wrong. Maybe
both are. The code is what gets executed and tested, so it’s more likely to be right;
probably the comment didn’t get updated when the code did. The comment doesn’t
say enough about the relationship among the three countries it does mention; if you
had to maintain this code, you would need to know more.

The few lines above are typical of much real code: mostly well done, but with
some things that could be improved.

2 STYLE CHAPTER 1

This book is about the practice of programming-—how to write programs for real.
Our purpose is to help you to write software that works at least as well as the program
this example was taken from, while avoiding trouble spots and weaknesses. We will
talk about writing better code from the beginning and improving it as it evolves.

We are going to start in an unusual place, however, by discussing programming
style. The purpose of style is to make the code easy to read for yourself and others,
and good style is crucial to good programming. We want to talk about it first so you
will be sensitive to it as you read the code in the rest of the book.

There is more to writing a program than getting the syntax right, fixing the bugs,
and making it run fast enough. Programs are read not only by computers but also by
programmers. A well-written program is easier to understand and to modify than a
poorly-written one. The discipline of writing well leads to code that is more likely to
be correct. Fortunately, this discipline is not hard.

The principles of programming style are based on common sense guided by expe-
rience, not on arbitrary rules and prescriptions. Code should be clear and simple—
straightforward logic, natural expression, conventional language use, meaningful
names, neat formatting, helpful comments—and it should avoid clever tricks and
unusual constructions. Consistency is important because others will find it easier to
read your code, and you theirs, if you all stick to the same style. Details may be
imposed by local conventions, management edict, or a program, but even if not, it is
best to obey a set of widely shared conventions. We follow the style used in the book
The C Programming Language, with minor adjustments for C++ and Java.

We will often illustrate rules of style by small examples of bad and good program-
ming, since the contrast between two ways of saying the same thing is instructive.
These examples are not artificial. The ‘‘bad’’ ones are all adapted from real code,
written by ordinary programmers (occasionally ourselves) working under the common
pressures of too much work and too little time. Some will be distilled for brevity, but
they will not be misrepresented. Then we will rewrite the bad excerpts to show how
they could be improved. Since they are real code, however, they may exhibit multiple
problems. Addressing every shortcoming would take us too far off topic, so some of
the good examples will still harbor other, unremarked flaws.

To distinguish bad examples from good, throughout the book we will place ques-
tion marks in the margins of questionable code, as in this real excerpt:

? #define ONE 1
” #define TEN 10
? #define TWENTY 20

Why are these #defines questionable? Consider the modifications that will be neces-
sary if an array of TWENTY elements must be made larger. At the very least, each name
should be replaced by one that indicates the role of the specific value in the program:

#define INPUT_MODE 1
#define INPUT_BUFSIZE 10
#define OUTPUT_BUFSIZE 20

SECTION 1.1 NAMES 3

1.1 Names

What’s in a name? A variable or function name labels an object and conveys
information about its purpose. A name should be informative, concise, memorable,
and pronounceable if possible. Much information comes from context and scope; the
broader the scope of a variable, the more information should be conveyed by its name.

Use descriptive names for globals, short names for locals. Global variables, by defi-
nition, can crop up anywhere in a program, so they need names long enough and
descriptive enough to remind the reader of their meaning. It’s also helpful to include
a brief comment with the declaration of each global:

int npending = 0; // current length of input queue

Global functions, classes, and structures should also have descriptive names that sug-
gest their role in a program.

By contrast, shorter names suffice for local variables; within a function, n may be
sufficient, npoints is fine, and numberOfPoints is overkill.

Local variables used in conventional ways can have very short names. The use of
i and j for loop indices, p and q for pointers, and s and t for strings is so frequent
that there is little profit and perhaps some loss in longer names. Compare

7 for (theElementIndex = 0; theElementIndex < numberOfElements;
2 theElementIndex++)
7 elementArray[theElementIndex] = theElementIndex;

to

for (i = 0; 1 < nelems; i++)
elem[i] = 1;

Programmers are often encouraged to use long variable names regardless of context.
That is a mistake: clarity is often achieved through brevity.

There are many naming conventions and local customs. Common ones include
using names that begin or end with p, such as nodep, for pointers; initial capital letters
for Globals; and all capitals for CONSTANTS. Some programming shops use more
sweeping rules, such as notation to encode type and usage information in the variable,
perhaps pch to mean a pointer to a character and strTo and strFrom to mean strings
that will be written to and read from. As for the spelling of the names themselves,
whether to use npending or numPending or num_pending is a matter of taste; specific
rules are much less important than consistent adherence to a sensible convention.

Naming conventions make it easier to understand your own code, as well as code
written by others. They also make it easier to invent new names as the code is being
written. The longer the program, the more important is the choice of good, descrip-
tive, systematic names.

Namespaces in C++ and packages in Java provide ways to manage the scope of
names and help to keep meanings clear without unduly long names.

4 STYLE CHAPTER 1

Be consistent. Give related things related names that show their relationship and high-

light their difference.
Besides being much too long, the member names in this Java class are wildly

inconsistent:

class UserQueue {
int noOfItemsInQ, frontOfTheQueue, queueCapacity;
public int noOfUsersInQueue() {...}

?
-2
?
?

}

The word ‘‘queue’’ appears as Q, Queue and queue. But since queues can only be
accessed from a variable of type UserQueue, member names do not need to mention
‘‘queue’’ at all; context suffices, so

? gueue.queueCapacity
is redundant. This version is better:

class UserQueue {
int nitems, front, capacity;
public int nusers() {...}

}

since it leads to statements like

queue.capacity++;
n = queue.nusers();

No clarity is lost. This example still needs work, however: ‘‘items’’ and ‘‘users’’ are
the same thing, so only one term should be used for a single concept.

Use active names for functions. Function names should be based on active verbs,
perhaps followed by nouns:

now = date.getTime();
putchar(’\n’);

Functions that return a boolean (true or false) value should be named so that the return
value is unambiguous. Thus

? if (checkoctal(c))
does not indicate which value is true and which is false, while
if (isoctal(c))
makes it clear that the function returns true if the argument is octal and false if not.

Be accurate. A name not only labels, it conveys information to the reader. A mis-
leading name can result in mystifying bugs.

One of us wrote and distributed for years a macro called isoctal with this incor-
rect implementation:

SECTION 1.1 NAMES 5

? #define isoctal(c) ((c) >= 0’ && (c) <= '8’)
instead of the proper
#define isoctal(c) ((c) >= "0’ && (c) <= '7")

In this case, the name conveyed the correct intent but the implementation was wrong;
it’s easy for a sensible name to disguise a broken implementation.
Here’s an example in which the name and the code are in complete contradiction:

? public boolean inTable(Object obj) {
? int j = this.getIndex(obj);

? return (j == nTable);

? 1

The function getIndex returns a value between zero and nTable-1 if it finds the
object, and returns nTable if not. The boolean value returned by inTabTle is thus the
opposite of what the name implies. At the time the code is written, this might not
cause trouble, but if the program is modified later, perhaps by a different programmer,
the name is sure to confuse.

Exercise 1-1. Comment on the choice of names and values in the following code.

#define TRUE 0

?

? #define FALSE 1

?

? if ((ch = getchar()) == EOF)
? not_eof = FALSE;

O

Exercise 1-2. Improve this function:

? int smaller(char =s, char =t) {
? if (strcmp(s, t) < 1)

? return 1;

” else

? return O;

4

a

Exercise 1-3. Read this code aloud:

? if ((fal1loc(SMRHSHSCRTCH, S_IFEXT|0644, MAXRODDHSH)) < 0)

6 STYLE CHAPTER 1

1.2 Expressions and Statements

By analogy with choosing names to aid the reader’s understanding, write expres-
sions and statements in a way that makes their meaning as transparent as possible.
Write the clearest code that does the job. Use spaces around operators to suggest
grouping; more generally, format to help readability. This is trivial but valuable, like
keeping a neat desk so you can find things. Unlike your desk, your programs are
likely to be examined by others.

Indent to show structure. A consistent indentation style is the lowest-energy way to
make a program’s structure self-evident. This example is badly formatted:

2 for(n++;n<100; field[n++]="\0");
) #1 = "\0"; return(C’\n’);

Reformatting improves it somewhat:

? for (n++; n < 100; field[n++] = ’\0’)

K ',’:'i = ’\0’;

? return(C’\n’);

Even better is to put the assignment in the body and separate the increment, so the
loop takes a more conventional form and is thus easier to grasp:

for (n++; n < 100; n++)
field[n] = '\0’;
*1 = "\0";
return ’'\n’;
Use the natural form for expressions. Write expressions as you might speak them
aloud. Conditional expressions that include negations are always hard to understand:

” if (!(block_id < actblks) || !(block_id >= unblocks))

B

Each test is stated negatively, though there is no need for either to be. Turning the
relations around lets us state the tests positively:

if ((block_id >= actblks) || (block_id < unblocks))

Now the code reads naturally.

Parenthesize to resolve ambiguity. Parentheses specify grouping and can be used to
make the intent clear even when they are not required. The inner parentheses in the
previous example are not necessary, but they don’t hurt, either. Seasoned program-
mers might omit them, because the relational operators (< <= == != >= >) have higher
precedence than the logical operators (& and | |).

When mixing unrelated operators, though, it’s a good idea to parenthesize. C and
its friends present pernicious precedence problems, and it’s easy to make a mistake.

SECTION 1.2 EXPRESSIONS AND STATEMENTS 7

Because the logical operators bind tighter than assignment, parentheses are mandatory
for most expressions that combine them:

while ((c = getchar()) != EOF)

The bitwise operators & and | have lower precedence than relational operators like ==,
so despite its appearance,

? if (x&MASK == BITS)

?
actually means

? if (x & (MASK==BITS))
which is certainly not the programmer’s intent. Because it combines bitwise and rela-
tional operators, the expression needs parentheses:

if ((x&MASK) == BITS)

Even if parentheses aren’t necessary, they can help if the grouping is hard to grasp
at first glance. This code doesn’t need parentheses:

7 leap_year =y %4 == 0 & y % 100 !=0 || yv % 400 == O;
but they make it easier to understand:
Teap_year = ((y%4 == 0) &% (y%100 != 0)) || (y%400 == 0);

We also removed some of the blanks: grouping the operands of higher-precedence
operators helps the reader to see the structure more quickly.

Break up complex expressions. C, C++, and Java have rich expression syntax and
operators, and it’s easy to get carried away by cramming everything into one con-
struction. An expression like the following is compact but it packs too many opera-
tions into a single statement:

2 #X += (xxp=(2+k < (n-m) ? c[k+1] : d[(k--1));
It’s easier to grasp when broken into several pieces:

if (2xk < n-m)
#xp = c[k+1];

else

xp = d[k--1;

¥
*X 4= x=XP,

Be clear. Programmers’ endless creative energy is sometimes used to write the most
concise code possible, or to find clever ways to achieve a result. Sometimes these
skills are misapplied, though, since the goal is to write clear code, not clever code.

