H S i BN A ZF HH R I

Fel v IF % bt it

 — hll%’{\ BRAS Ly i mp b B ik il

Program Development in Java

Abstraction, Specification, and Object-Oriented Design

Program
- Development

in Java Sl

| Specification, and
J Object-Oriented Design

Abstraction,

[[£] Barbara Liskov %

Barbara Liskov John Guttag
| with John Guttag

fi‘ }.,'L e 8
2| % F IF & AR AL
‘ Publishing House of Electronics Industry
e

http://www.phei.com.cn

FiLIY 1 I e
TR

FMiegrams Db o piierd ma lara

Pa g 15N
" e —
mlra

ESMTEIFEEH R

EFA&RRE

— WR. ABSERITRIZIT
(F R)

Program Development In Java

Abstraction, Specification, and Object-Oriented Design

[£] Barbara Liskov %
John Guttag

% F I¥ & A& AL
Publishing House of Electronics Industry
Jtat - BEUING

) LR

ABHELAFRBEREHIE, REXERGTETERA T IRSHTENMERNSRLBRIRESM . 5
TS TERWBRAABTRYE. 5 THFMRESRMRAGHNITRTTE, BRATRAWERETREE, AF
BBV B TS A I A SR MR DU KRR (4 R AT . A5 HAT 8 FEE KR
GBS — 2 1A IR SRELE, MR . SR ABEENRERRS. Wb, FEETK
BMBIF, RIFERMMTDREAE SCXEHEmR, MAERTRTRAIES, HEXLTHRRTRNTERE
BRFM ZHWE T EEEIRR T ERAAMSNEARERG, TEMETRATENAR, ETRUEK
ZEHI R T TR MR AR B, TR . ATR THEAKITFRIR, BEENR T RHRARHBR,

XR—AERBENBE, BEREELIARBIEE, NFEBREERTFHXE. A BEFERENK
BB, ERERMTEFRFEN TEYNHRES . W, AHRERESRATFREARSE,

English reprint Copyright © 2006 by PEARSON EDUCATION ASIA LIMITED and Publishing House of Electronics
Industry.

Program Development In Java: Abstraction, Specification, and Object—Oriented Design, ISBN: 0201657686 by Barbara
Liskov and John Guttag, Copyright © 2001. All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison Wesley.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special Administrative Region of

Hong Kong and Macau).

A H S EIAR i B T 1 olb 4 AR A Pearson Education 3542 2 F AR WM A FRA A1 SRR . R4 HIE Tk
BEFT, AEFUEMFRE R R RAE BRI
A B EIEA Pearson Education B4 #H & W AREABOLEI FE, THEAEIBHE,

B A SERRCS EZ: 01-2006-3398
FAHERBRE (CIP) iF

BREARFH—M% . M SER I RIZIT = Program Development In Java: Abstraction, Specification, and
Object—Oriented Design / (£) FIHFRIE (Liskov, B.) %% - Jb51. B F T HARAE, 2006.6

(ESMT BB =B BT
ISBN 7-121-02693-7

T#2. 0.8 I 84FHFE -8 - FEX IV.TP311.52
o E ARAE BAE CIP BT (2006) 450524105

HERE: 5 K
BN R JbETR S RENRIT
AR & F7: BF Tkt iREE
JERETEEX T HRK 1735/ HF%: 100036
2 SWFEHE
FH A 787 x 980 1/16 Epgk. 29 FH. 650 TF
Bl K 200646 A% 1 RENRI
E£ I 58.000T

NWE e 7Ty AR E 5, WA SRR, FRWEHERG; SHEEHR, HERLEITHRER, BER
BiE: (010) 68279077, FHEBHRIFEEHMEZE zlts@phei.com.cn, EWARIFHLEIRTF R BRI ZE dbgq@phei.com.cn,

ZEENAER

TSR ER T b R A B S !

RIBBBRABEL, FHENEHBEILET TRIFFERAN.

EMER LR B FR
Sei PR LA OB O O—f& OFRKEF O
BB ICF AN DR O O—& OAFKHF Oz
OeRFRATERE) (OB O O—8 OFRKE 0%)
B RIEEEE OREE O&E O—& OFEE O
(/AR I) (OB OF O—& OA&RKE mE=P)
IRV =45 Ok> Ol O—F O% OX%
EBamE (efAmkas) | DR O O—& OAFKH Oz
Btk
B Oeffmkad) DR& O O—f& OAFKHF Oz
ENRIZET B .
Wk B (ER/MR) DR 4T O O—f& OFKHF mE=
EM OfEE OfFg O848 O# OA#
X B AR TAYERIRGE O1REF O O—f& O Ox
Xt AR 55 JR & K E O1R&F O O—f& OFHF mE=
AT AL ZRER AR B OFER OBRFHEEME OBE OMAES O DHRT

Ot fmss M OsCFaiEtt QbR ElE)
HND B F TV R DREEEE CtRAmEIT) OBRY b2
I 533 i 5 T O®vAKFE OHRERTEE OXKKRE (EEMR)
OEs OEf£I% ORERE

B R AR DRI
EEBS: BRAR:
MNETE: OFARIRE DEAEHE ODLEEHE OfFBEHE O#HERI Oa&%Ed

FAEEE dFHbhL: JLRTIER 173 SR F LV HRMSRE BB&EB: 100036 WEA: BN
fEH: (010) 88254560 WifkA: ¥B/NIL
B F{5#8: fengxiaobei@phei.com.cn

tH AR i BA

20 HAHH 5 B 10FEEREERAF 2R REZENY], WRER/ I HRE & i) R
B, TEREIMA WTO 54K, BFR—SGE N B FH R IT AA MLERERFHEN
HEMEFZ —. FEREMERFEAAMRS SLE, BREEX EPREFRIEHCREE,

AT, EERESSHEEIEGEEAEIRNHERE . CEXNERNY, AFEREHFE
-5 E PR, A R AR RSB UETE A FELU(E B AF R IEOR IR 8 BAMA 5 B0 FIL 5 TR AR
#ht, DMERELETTREIEE ERYGE EEEREHRKT :

WP DAL RASERS | HEMBEBNEE, BHEHRT “ESMNTEVRIEEM R
B A, RESMBERERNEET . SEE. BRE, BAARE LIRS, WA R
A, LUEMAFBER . AR %k . ARZRBITAX A 8FTR, T R4 B s 8 B4
R XEEM P RRER T RREME S5HEGE . BIERE . HENAL 5% . Bk S5EdRS
0, BREESHFEELAHE, HEES . BREEGRSEZHE. RFETES, Fit, RITbES508#T—
SR FFI SRR B, A5 BHIRRAS IS SURRROF B AR , X 2 55 B 5 BE AR 3 S SR AR SR HHEAR
VL H BRI ARAS

TERI B ERE |, A TREREREE SN E L B B AR B #b , 41 Pearson Education 34
BHAER . ZRTT - AREE BARER . R TR AL . SIBF KBS . BEHM
WEEE RIS M R NBAR & , tnEAR DT - BHBR(Douglas E. Comer), BUSE - BRI William
Stallings). M4k - BFF/R (Harvey M. Deitel), JuRIHT - AT (Uyless Black) %,

NEBREA R BB R, WAINFETHEERE . O RE, SR R¥. B
BRZ%, BEGERE. BRA¥. WK%, M/RETIRE, EPRBRE . FEEEKE.,
HBBERARRE: R EE T RS ELRRENEBRNETHIRS S TARFIHM kS . 8%
R LAE T EEA HRFEREME TH0, L, WARRTILHESSELR R 8=
HtAsm,

TEZRFNH AR . BHFMGEM T ER S, AEESEM AR, RO T KEMBH TE,
BFEXT B R HA AT REISIE; EREHMEN JRBBIL T A XFHERR . EPHIR BT R,
XFFIECEM P BEIRIR, RATES SEFREMN ETHERERRSE R, B—#1T7THBIT,

HeAh, BATEHK S ESNEL BN FIEE, RE— S8 BBF R, FEENEHERI
REF . Sa, RATHRENE S5 & SEBUTNBETIBR, K7 KB4 S| 3 E 20 ESMEE S
MEE4, AREHEIREEFERSERSFRROBERME SN,

B Dlk At

*

£

£

"

ZESC]

HEK

WA

i (= PR

CI

5K B

HMHRERS

Tk
o R b

TR B TR EE
TR TRRBFIBTAT

FEARKEERERBK .. ##F

HERETENB S SEAREE
EPrME BB G S EFRAETERE

HERFHENRE SRR REE, AW
HHERETRINF AR5 B2

T EARFRER T R¥EHR
EEMBEHEARPR DO FE, HLAESIT

ERSGERFEHT YRS TRERHR
EwafitERARPOEE

FiEERBRENRPOEE. BEEREHE
FEIHBHESESHEE, HETIEIFAEEK

BB RHFRAR K FEH B AR . 194 S0
BEWIT BV EMBBRHAEIEARBIEERR

FHREFEEIREREE

L

P 3% [R 44 BB T2 B Liskov # B M Gurtag BUR & ZE XA $, RELEDINIES, BWRY
HISCE, BIEMESMA AT HE . IBAEEMNRETSEEES, WREIT DI IEA
W FFE RS, BN T EARMEEF Z AN —F, HOEHER AL, EFERAFREE D,
AR BTSSR, R T LiskovEB & MM AR5 L EERGIF AR T ENER,
HEHSHMME N MBEAR ST, FiEEFEEF, Nixik, ABE—-BRGEF+EEREX
HIEE

BRI R, EEREHET¥ECA 900 TR EM, 3487 2007 4352 1800 1]
B LR, ABERZEHEFLESHENRLFRI—1BOIRE (6.170) BEH, A RE
PERI IR L T Internet I, B “Liskov B#J5EN” Tij%14 i Barbara Liskov (4%, X781t 2004 4E
BE - iR B, 7E 20148 70 FAX, Liskov BIRMEMBEIESSH (ADT) WIS HLHA TEX
PERE, B T H MR AR Liskov BB R EE TREMEAR RIS, MAEREHETE
BRI ZEHFELZBURAEATEBEREMNHRBE, FHHGIET HIRBHEERE,

B TRAIURRA B B CR2ER, BRET Bl RBGREE, R TAENSAREEM
PRSI EMHHEAEBRAHR, IMEFER—RRGTERTMHEFREH TERRER, R E#HE
BRI, AREMA B BNERE . ENEME-VSENER, B%IERNIBRP OGS
— BB (22 ERMLFUTIHFRIMERM), LNMEHZAESENELUHLBIRE, BFEFLE
HEBAL L TEE LR TITHF RS BRl . B4 TR I AHh 2 1L e 7K e g X 3K 14 BRAR 7Y
BE

REBA#E T, MBAHERER IR, BRI T — MO, 2R 5000 F R
HPE R G S RS EBEMARIABRFEF R FENEERZ G, IEERF TR FEESH
BTN, BFHbiE RSO ERHE ST B C HERERAYAE, X—RBRAEHEE TR
13X L UM A E AT

M 20 FRLERTEINRY, KSR EFNISHERENRIFE R EiEH, FrgdEE
AT, BPOREFEUBREE RFR . BRHEBRE, MARAEBIEN /5, H
HFIERATT:, EARERVIERRE., BRIEEAHSNEERERIES ZAEAE &MY,
BUTE M R R BV T E e3R8 2, EE R P EMNEENRRE RS TR, EMEEISIERIL
R, wEATFXEHEE R ERER .

FL b, ABHRRETRERMHE . BB SEEN R, EEREEER T A B
Nl EFRBET I TR, WS TR, IR SES KA kE

Bo b, AR R T ERAEE 2R 2 B MY F R E— N KRG AL MR LE R
Tk BHRITHH— N EE RS MR 5.

ABHHE G (F1EDFESHE) WEAKTEMRBIN L. XSFEWINHEBRFNAENE . o
B, BEME . 2R, ZRHMBURLRRER, XESHERZ T L8, flmt oz
RIL? EREHITHR? MARERHES? WAEIME? TR EIHAEMRES? WA
RYZER? ARTEBMBRPET P, ATLIEBL Liskov A M TR/ LR RAEHREN, HR
LSP (Liskov Z#JAN]), ABHE ok TR NHFEBHMKEEREMN TR . #RAER
(representation invariant) F1#H52 pE%X (abstraction function), Liskov B # RN R4k & E A, R
HHUTFRALFRLYE, BRAENIIRERZERET, ABERIEMEEH, TR0 fE7E LR
Bl b ESHNFTEIAT A o BUTRT LAFI X 2 BA BHHER T, ik NS, BEMER, BHRK,
AESHIT M EHIEHARMRBREMER, UREBFEMMER LR,

ABRE S (FIFFH 145) HRRWBRNF RIS, 3R EEAHBEZMEN
BN RERE . AMHMBIHRE TREF RS EBE N EaR. R, 3. w3, U
AP, MIRA LY T KRB AL

FHIFE=50 (REEE 15F) @R TR, 72014 0 FRHH, Bt BA
FEE X RGBPRT | THEZMEE S . WIMERXRER B, A ZER TR,
XA BAERIOBRARERE S, ENTNARERER SRERM, M THRIEXIARAY
BHEX, TIRLTH,

AFFRIHE T AT X R AT X R Z [X 5, {HIavadf AR R BA AT LS BB E
T, T B T) % AR AT B R R B 2R

Liskov XUt #2 Liskov $#2 i (AR BEER, TRE—NEREN IR, EALKEKNEFA
B B HUX AR AW (overview), BERAAH T EUBMK IR R . EBEMBIHE,
Liskov XU FIFE R4 (requires clause) B3R TR &M, TSR EXELARRMA T HE X
#o BHE (modifies clause) 7 TR BER THHIABARNERF (LEMERREMA). mE
FESMAGERT, eI SR E TRVER (side effect), A MAGBHN, ATLIA
BEUER . PHEEBURRERERARARBE . &5, FRHEX (effects clause) & L™
A TR, RGO T RIEREA . TEEEEMBALHEL, B R 4f: BT Fixd
ZMAIEE, R REEE TR TH (producer), BT RAPRASMNEEE (mutator),
R X RIPREFE B HMEE (observer),

ERELBHET, AN -15ESPWRE (reflect) FIHAZE M L. HMAMTTREN ER2RA
EFHE (mask) 7Y, LEREARL, ASEHASEEFHRE, A BEEHE TIFEZEFRITIEXH
FRE R o

RTRBBZREFHEAHE T HHRIEN], B 70 E R FARBIRE STRRE R RE . A
3INBHLTUR RIS 24N (Signature Rule), FREITRABHIA LCRBNHTA L, HR

TRETT RSB UG HR I SCRB I LRI BB IRA; J7H5EH (Methods Rule), F-RAIT LR
FRSA “RIFBR” MR HLERTT A ; BIESN (Properties Rule), TREIMFURLFIL
KB RIFTH R

RR—AGEHWHREF BAER BN BE, BIRERARRTRE, BRFEFRFR. £3I8
BeEm R MR Z RO AR AR BHRE B FR LR T L BRNFRAAN]— 25
B R EABEZBEN, AEFTHRENRER. BEABR0EE R AR

Y XG5
EEGERFRA B

Preface

Constructing production-quality programs—programs that are used over an
extended period of time—is well known to be extremely difficult. The goal
of this book is to improve the effectiveness of programmers in carrying out
this task. I hope the reader will become a better programmer as a result of
reading the book. I believe the book succeeds at improving programming skills
because my students tell me that it happens for them.

What makes a good programmer? It is a matter of efficiency over the entire
production of a program. The key is to reduce wasted effort at each stage.
Things that can help include thinking through your implementation before
you start coding, coding in a way that eliminates errors before you test, doing
rigorous testing so that errors are found early, and paying careful attention
to modularity so that when errors are discovered, they can be corrected with
minimal impact on the program as a whole. This book covers techniques in all
these areas.

Modularity is the key to writing good programs. It is essential to break up
a program into small modules, each of which interacts with the others through
a narrow, well-defined interface. With modularity, an error in one part of a
program can be corrected without having to consider all the rest of the code,
and a part of the program can be understood without having to understand the
entire thing. Without modularity, a program is a large collection of intricately
interrelated parts. It is difficult to comprehend and to modify such a program,
and also difficult to get it to work correctly.

The focus of this book therefore is on modular program construction: how
to organize a program as a collection of well-chosen modules. The book re-
lates modularity to abstraction. Each module corresponds to an abstraction,
such as an index that keeps track of interesting words in a large collection
of documents or a procedure that uses the index to find documents that

match a particular query. Particular emphasis is placed on object-oriented
programming—the use of data abstraction and objects in developing pro-
grams. '

The book uses Java for its programming examples. Familiarity with Java
is not assumed. It is worth noting, however, that the concepts in this book are
language independent and can be used to write programs in any programming
language.

How Can the Book Be Used?

Program Development in Java can be used in two ways. The first is as the text
for a course that focuses on an object-oriented methodology for the design and
implementation of complex systems. The second is use by computing profes-
sionals who want to improve their programming skills and their knowledge
of modular, object-oriented design.

When used as a text, the book is intended for a second or third program-
ming course; we have used the book for many years in the second program-
ming course at MIT, which is taken by sophomores and juniors. At this stage,
students already know how to write small programs. The course builds on this
material in two ways: by getting them to think more carefully about small pro-
grams, and by teaching them how to construct large programs using smaller
ones as components. This book could also be used later in the curriculum, for
example, in a software engineering course.

A course based on the book is suitable for all computer science majors.
Even though many students will never be designers of truly large programs,
they may work at development organizations where they will be responsible
for the design and implementation of subsystems that must fit into the overall
structure. The material on modular design is central to this kind of a task. It
is equally important for those who take on larger design tasks.

What Is This Book About?

Roughly two-thirds of the book is devoted to the issues that arise in building
individual program modules. The remainder of the book is concerned with
how to use these modules to construct large programs.

Program Modules

This part of the book focuses on abstraction mechanisms. It discusses proce-
dures and exceptions, data abstraction, iteration abstraction, families of data
abstractions, and polymorphic abstractions.

Three activities are emphasized in the discussion of abstractions. The first
is deciding on exactly what the abstraction is: what behavior it is providing to
its users. Inventing abstractions is a key part of design, and the book discusses
how to choose among possible alternatives and what goes into inventing good
abstractions. :

The second activity is capturing the meaning of an abstraction by giving a
specification for it. Without some description, an abstraction is too vague to be
useful. The specification provides the needed description. This book defines a
format for specifications, discusses the properties of a good specification, and
provides many examples.

The third activity is implementing abstractions. The book discusses how
to design an implementation and the trade-off between simplicity and per-
formance. It emphasizes encapsulation and the need for an implementa-
tion to provide the behavior defined by the specification. It also presents
techniques—in particular, the use of representation invariants and abstrac-
tion functions—that help readers of code to understand and reason about it.
Both rep invariants and abstraction functions are implemented to the extent
possible, which is useful for debugging and testing.

The material on type hierarchy focuses on its use as an abstraction
technique—a way of grouping related data abstractions into families. An im-
portant issue here is whether it is appropriate to define one type to be a
subtype of another. The book defines the substitution principle—a method-
ical way for deciding whether the subtype relation holds by examining the
specifications of the subtype and the supertype.

This book also covers debugging and testing. It discusses how to come up
with a sufficient number of test cases for thorough black box and glass box
tests, and it emphasizes the importance of regression testing.

Programming in the Large

The latter part of Program Development in Java is concerned with how to
design and implement large programs in a modular way. It builds on the
material about abstractions and specifications covered in the earlier part of

‘the book.

The material on programming in the large covers four main topics. The
first concerns requirements analysis—how to develop an understanding of
what is wanted of the program. The book discusses how to carry out require-
ments analysis and also describes a way of writing the resulting requirements
specification, by making use of a data model that describes the abstract state
of the program. Using the model leads to a more precise specification, and
it also makes the requirements analysis more rigorous, resulting in a better
understanding of the requirements.

The second programming in the large topic is program design, which is
treated as an iterative process. The design process is organized around dis-
covering useful abstractions, ones that can serve as desirable building blocks
within the program as a whole. These abstractions are carefully specified
during design so that when the program is implemented, the modules that
implement the abstractions can be developed independently. The design is
documented by a design notebook, which includes a module dependency
diagram that describes the program structure.

The third topic is implementation and testing. The book discusses the need
for design analysis prior to implementation and how design reviews can be
carried out. It also discusses implementation and testing order. This section
compares top-down and bottom-up organizations, discusses the use of drivers
and stubs, and emphasizes the need to develop an ordering strategy prior to
implementation that meets the needs of the development organization and its
clients.

This book concludes with a chapter on design patterns. Some patterns
are introduced in earlier chapters; for example, iteration abstraction is a
major component of the methodology. The final chapter discusses patterns
not covered earlier. It is intended as an introduction to this material. The
interested reader can then go on to read more complete discussions contained
in other books.

Barbara Liskov

©11 -

Acknowledgments

‘12 -

John Guttag was a coauthor of an earlier version of this book. Many chapters
still bear his stamp. In addition, he has made numerous helpful suggestions
about the current material.

Thousands of students have used various drafts of the book, and many
of them have contributed useful comments. Scores of graduate students have
been teaching assistants in courses based on the material in this book. Many
students have contributed to examples and exercises that have found their
way into this text. I sincerely thank all of them for their contributions.

My colleagues both at MIT and elsewhere have also contributed in im-
portant ways. Special thanks are due to Jeannette Wing and Daniel Jackson.
Jeannette Wing (CMU) helped to develop the material on the substitution
principle. Daniel Jackson (MIT) collaborated on teaching recent versions of

-the course and contributed to the material in many ways; the most important

of these is the data model used to write requirements specifications, which is
based on his research.

In addition, the publisher obtained a number of helpful reviews, and I
want to acknowledge the efforts of James M. Coggins (University of North
Carolina), David H. Hutchens (Millersville University), Gail Kaiser (Columbia
University), Gail Murphy (University of British Columbia), James Purtilo (Uni-
versity of Maryland), and David Riley (University of Wisconsin at LaCrosse).
I found their comments very useful, and I tried to work their suggestions into
the final manuscript.

Finally, MIT’s Department of Electrical Engineering and Computer Science
and its Laboratory for Computer Science have supported this project in impor-
tant ways. By reducing my teaching load, the department has given me time
to write. The laboratory has provided an environment that enabled research
leading to many of the ideas presented in this book.

Contents

1 — Introduction 1
1.1 Decomposition and Abstraction 2
1.2 Abstraction 4
1.2.1 Abstraction by Parameterization 7
1.2.2 Abstraction by Specification 8
1.2.3 Kinds of Abstractions 10
1.3 The Remainder of the Book 12
Exercises 13
2 — Understanding Objects in Java 15
2.1 Program Structure 15
2.2 Packages 17
2.3 Objects and Variables 18
2.3.1 Mutability 21
2.3.2 Method Call Semantics 22
24 Type Checking 24
2.4.1 Type Hierarchy 24
2.4.2 Conversions and Overloading 27
2.5 Dispatching 29
26 Types 30

<13 -

.14 -

2.7
2.8

2.6.1 Primitive Object Types 30
2.6.2 Vectors 31

Stream Input/Output 32
Java Applications 33

Exercises 35

3 — Procedural Abstraction

3.1
3.2
33
3.4
3.5
3.6

The Benefits of Abstraction 40
Specifications 42

Specifications of Procedural Abstractions 43
Implementing Procedures 47

Designing Procedural Abstractions 50
Summary 55

Exercises 56

4 — Exceptions

4.1
4.2

4.3

4.4

4.5
4.6

Specifications 59

The Java Exception Mechanism 61

4.2.1 Exception Types 61

4.2.2 Defining Exception Types 62

4.2.3 Throwing Exceptions 64

4.2.4 Handling Exceptions 65

4.2.5 Coping with Unchecked Exceptions 66
Programming with Exceptions 67

4.3.1 Reflecting and Masking 67

Design Issues 68

4.4.1 When to Use Exceptions 70
4.4.2 Checked versus Unchecked Exceptions 70

Defensive Programming 72
Summary 74

Exercises 75

39

57

