1= BIHERXFILZ SREBWEER
' HZ Books

R —
FJ L

ALl
Design Patterns:
Elements

of Reusable Object-Oriented
Software

FRE DRE =y N@F F

TV MBI UM

China Machine Press

it &z

Al 52 v ok S 8K A vy A
AL Tl

Design Patterns:

Elements

of Reusable Object-Oriented
Software

(%) Erich Gamma Richard Helm Ralph Johnson Joh

AHREMAEHTRTISREE, HRABRANARETEZEM. FB44110H
KON E R RATR P REH 23R TR, SETRAMRRHHEANENLZE,
FHMEETERMEAREN R, 2B LR T —HIRIRY . REHFBOKRERT
B, XERAELARETHINEN. 2 BEERFHENELNEE, BFAERBEX
ARE%,

Original edition, entitled DESIGN PATTERNS: ELEMENTS OF REUSABLE OBJECT-
ORIENTED SOFTWARE, 1st Edition, 0201633612 by GAMMA, ERICH; HELM, RICHARD;
JOHNSON, RALPH; VLISSIDES, JOHN M., published by Pearson Education, Inc, publishing
as Addison Wesley Professional, Copyright © 1995 by Addison Wesley Longman, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording or by any
information storage retrieval system, without permission from Pearson Education, Inc.

China Adapted edition published by PEARSON EDUCATION ASIA LTD. and CHINA
MACHINE PRESS Copyright © 2007.

This Adapted edition is manufactured in the People’s Republic of China, and is authorized
for sale only in People’s Republic of China excluding Hong Kong and Macau.

A A5%f EH WG A Pearson Education (34 H HER) BEDARE, TIHRESTRE
i,

KRR E, AR,
FHEEMIE LR REERWESHR

ABFEBicS: AF. 01-2007-1743
BBERRE (CIP) ¥R

WHEX: TEHERMSRKFEPER. WER / (%) WE (Gamma, E.) ¥,
FRELF b5 YURT L HkRE, 2007.3

$ 4B X Design Patterns: Elements of Reusable Object-Oriented Software

ISBN 978-7-111-21126-6

Lig ILOf- @ ZF- I @EXNRIEF-BFIZIT-%, L IV. TP312
TR A E-BECIPKIEE® (2007) 0335115

FLBR Tl tHhR . Gt & 5 i A#5228 BEAFS 100037)
WG B

JbsCa L SLENRITENRY - B E RS R RIT
200743 H & RS LIREN R

186mm x 240mm - 41E15k

EHfr: 69.005C

a4, mAEFT. B, BRI, AARHEITHAR
A EPReL (010) 68326294

Preface

This book isn’t an introduction to object-oriented technology or design. Many books
already do a good job of that. This book assumes you are reasonably proficient in at least
one object-oriented programming language, and you should have some experience in
object-oriented design as well. You definitely shouldn’t have to rush to the nearest
dictionary the moment we mention “types” and “polymorphism,” or “interface” as
opposed to “implementation” inheritance.

On the other hand, this isn’tan advanced technical treatise either. It's a book of design
patterns that describes simple and elegant solutions to specific problems in object-
oriented software design. Design patterns capture solutions that have developed and
evolved over time. Hence they aren’t the designs people tend to generate initially. They
reflect untold redesign and recoding as developers have struggled for greater reuse
and flexibility in their software. Design patterns capture these solutions in a succinct
and easily applied form.

The design patterns require neither unusual language features nor amazing program-
ming tricks with which to astound your friends and managers. All can be implemented
in standard object-oriented languages, though they might take a little more work than

ad hoc solutions. But the extra effort invariably pays dividends in increased flexibility
and reusability.

Once you understand the design patterns and have had an “Aha!” (and not just a
“Huh?”) experience with them, you won’t ever think about object-oriented design in
the same way. You'll have insights that can make your own designs more flexible,
modular, reusable, and understandable—which is why you're interested in object-
oriented technology in the first place, right?

A word of warning and encouragement: Don’t worry if you don’t understand this
book completely on the first reading. We didn’t understand it all on the first writing!
Remember that this isn’t a book to read once and put on a shelf. We hope you’ll find
yourself referring to it again and again for design insights and for inspiration.

This book has had a long gestation. It has seen four countries, three of its authors’
marriages, and the birth of two (unrelated) offspring. Many people have had a part
in its development. Special thanks are due Bruce Anderson, Kent Beck, and André
Weinand for their inspiration and advice. We also thank those who reviewed drafts

v

of the manuscript: Roger Bielefeld, Grady Booch, Tom Cargill, Marshall Cline, Ralph
Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur Riel, Doug Schmidt,
Clovis Tondo, Steve Vinoski, and Rebecca Wirfs-Brock. We are also grateful to the
team at Addison-Wesley for their help and patience: Kate Habib, Tiffany Moore, Lisa
Raffaele, Pradeepa Siva, and John Wait. Special thanks to Carl Kessler, Danny Sabbah,
and Mark Wegman at IBM Research for their unflagging support of this work.

Last but certainly not least, we thank everyone on the Internet and points beyond who
commented on versions of the patterns, offered encouraging words, and told us that
what we were doing was worthwhile. These people include but are not limited to
Jon Avotins, Steve Berczuk, Julian Berdych, Matthias Bohlen, John Brant, Allan Clarke,
Paul Chisholm, Jens Coldewey, Dave Collins, Jim Coplien, Don Dwiggins, Gabriele Elia,
Doug Felt, Brian Foote, Denis Fortin, Ward Harold, Hermann Hueni, Nayeem Islam,
Bikramjit Kalra, Paul Keefer, Thomas Kofler, Doug Lea, Dan LaLiberte, James Long,
Ann Louise Luu, Pundi Madhavan, Brian Marick, Robert Martin, Dave McComb, Carl
McConnell, Christine Mingins, Hanspeter Mossenbock, Eric Newton, Marianne Ozkan,
Roxsan Payette, Larry Podmolik, George Radin, Sita Ramakrishnan, Russ Ramirez,
Alexander Ran, Dirk Riehle, Bryan Rosenburg, Aamod Sane, Duri Schmidt, Robert
Seidl, Xin Shu, and Bill Walker.

We don’t consider this collection of design patterns complete and static; it’s more a
recording of our current thoughts on design. We welcome comments on it, whether
criticisms of our examples, references and known uses we’ve missed, or design pat-
terns we should have included. You can write us care of Addison-Wesley, or send
electronic mail to design-patterns@cs.uiuc.edu. You can also obtain softcopy
for the code in the Sample Code sections by sending the message “send design pattern
source” to design-patterns-source@cs.uiuc. edu. And now there’s a Web page
athttp://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html for
late-breaking information and updates.

Mountain View, California E.G.
Montreal, Quebec R.H.
Urbana, lllinois RJ.
Hawthorne, New York J.V.

August 1994

Foreword

All well-structured object-oriented architectures are full of patterns. Indeed, one of the
ways that [measure the quality of an object-oriented system is to judge whether or
not its developers have paid careful attention to the common collaborations among its
objects. Focusing on such mechanisms during a system’s development can yield an

architecture that is smaller, simpler, and far more understandable than if these patterns
are ignored.

The importance of patterns in crafting complex systems has been long recognized in
other disciplines. In particular, Christopher Alexander and his colleagues were perhaps
the first to propose the idea of using a pattern language to architect buildings and cities.
His ideas and the contributions of others have now taken root in the object-oriented
software community. In short, the concept of the design pattern in software provides a
key to helping developers leverage the expertise of other skilled architects.

In this book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides introduce
the principles of design patterns and then offer a catalog of such patterns. Thus, this
book makes two important contributions. First, it shows the role that patterns can play
in architecting complex systems. Second, it provides a very pragmatic reference to a set

of well-engineered patterns that the practicing developer can apply to crafting his or
her own specific applications.

I'm honored to have had the opportunity to work directly with some of the authors of
this book in architectural design efforts. I have learned much from them, and I suspect
that in reading this book, you will also.

.Grady Booch

Chief Scientist, Rational Software Corporation

Guide to Readers

This book has two main parts. The first part (Chapters 1 and 2) describes what design
patterns are and how they help you design object-oriented software. It includes a design
case study that demonstrates how design patterns apply in practice. The second part
of the book (Chapters 3, 4, and 5) is a catalog of the actual design patterns.

The catalog makes up the majority of the book. Its chapters divide the design patterns
into three types: creational, structural, and behavioral. You can use the catalog in several
ways. You can read the catalog from start to finish, or you can just browse from pattern
to pattern. Another approach is to study one of the chapters. That will help you see
how closely related patterns distinguish themselves.

You can use the references between the patterns as a logical route through the catalog.
This approach will give you insight into how patterns relate to each other, how they can
be combined with other patterns, and which patterns work well together. Figure 1.1
(page 12) depicts these references graphically.

Yet another way to read the catalog is to use a more problem-directed approach. Skip
to Section 1.6 (page 24) to read about some common problems in designing reusable
object-oriented software; then read the patterns that address these problems. Some
people read the catalog through first and then use a problem-directed approach to
apply the patterns to their projects.

If you aren’t an experienced object-oriented designer, then start with the simplest and
most common patterns:

o Abstract Factory (page 87) e Factory Method (107)
e Adapter (139) e Observer (293)

e Composite (163) e Strategy (315)

e Decorator (175) e Template Method (325)

It's hard to find an object-oriented system that doesn’t use at least a couple of these
patterns, and large systems use nearly all of them. This subset will help you understand
design patterns in particular and good object-oriented design in general.

Contents

Preface
Foreword

Guide to Readers

1 Introduction

1.1 WhatlsaDesignPattern?
1.2 Design Patterns in Smalltalk MVC
1.3 Describing Design Patterns

1.4 The Catalog of Design Patterns
1.5 Organizing the Catalog

1.6 How Design Patterns Solve Design Problems

1.7 How to Select a Design Pattern

1.8 How to Use a Design Pattern

A Case Study: Designing a Document Editor
2.1 Design Problems

2.2 Document Structure

23 Formatting

2.4 Embellishing the User Interface

25 Supporting Multiple Look-and-Feel Standards

2.6 Supporting Multiple Window Systems
2.7 User Operations

2.8 Spelling Checking and Hyphenation

29 Summary

O GO OV N

VIII

Design Pattern Catalog

3 Creational Patterns
Abstract Factory
Builder
Factory Method

Prototype

Singleton

Discussion of Creational Patterns

4 Structural Patterns

Proxy

Discussion of Structural Patterns

5 Behavioral Patterns

Chain of Responsibility

Command

Interpreter

fterator

Mediator

Memento

Observer e e,

79

81
87
97
107
117
127

135

137
139
151
163
175
185
195
207

219

IX

TemplateMethod L L L 325
Visitor e 331
Discussion of Behavioral Patterns 345
6 Conclusion 351
6.1 What to Expect from Design Patterns, 351
62 ABriefHistory, 355
6.3 The PatternCommunity 356
6.4 Anlnvitation, 358
6.5 APlartingThought 358
A Glossary 359
B Guide to Notation 363
B.1 ClassDiagram 363
B2 Object Diagram 364
B3 InteractionDiagram 366
C Foundation Classes 369
C1 OList .. 369
C2 Tterator 372
C.3 Listlterator 372
Ca Point. 373
C5 Rect 374
Bibliography 375

Index 383

B

}%%‘ ... 386
ﬁfj‘%’ ... 387
ﬁ%—%‘éﬁ 388
%lﬁ g[%' 389
LU HaBB R s 390
1.2 Smalltalk MVCHIRJIRZ IR -0 391
1.3 HiRigitaat 392
14 EHERIEE e 393
1.5 HEUERE -rvorerrrerrr 395
L6 TS BRI oo 396
1.6.1 ﬁ;ﬂi%ﬁmﬁ% 397
162 REFFTBEIEIEE ovvevervrmeeneen 397
1.63 ﬁﬁﬁ%%u 397
1.6.4 HGRIEREIEH oo 398
165 BHEHPLE] oo 401
1.6.6 RKBz f7t %) Fngm et X1
g':*@ 403
1.6.7 iRl coeeeeerereneees 404
1.7 BRGEEIEHER 407
1.8 ﬁ#{iﬁﬁl&i‘i‘ﬁiﬁ 408
B2E EATR. RH K
%ﬁ%ﬁ 410
20 BRI oo 411
22 SCRYEEM oo, 411
2201 GEVAHALG oo 412
222 PEHIFE st 413

223 AR coocrrerrerreeerineneiinens 415
23 *%ﬁ{t 415
231 HESEBAALBE: eeeeeeererees 415
2.3.2 CompositorflComposition «-«------ 416
233 BRERER oooeeeeereieeenin 417
24 R PIFE -vvveeeorrrrreeeeienns 417
241 FHERE ovvveeerernnneeeriennans 417
242 MonoGlyph 418
243 Decorator BEZ ---cererreeremeennns 420
2.5 HEFZRFUREREE oo 420
251 HHROIBIIME voeerrereen 420
252 Iré‘é‘fﬂf‘ﬂiﬁ 421
2.5.3 Abstract Factoryfiz; -« ---eoevvneee 423
26 HHFLFPROERYGE - vovvrrrmemerinnen 423
2.6.1 AL ATLAEF Abstract
Factoryﬁit 423
262 HELIUKEEER oooreeeeee 424
2.6.3 Window#IWindowlmp ---+-+------ 425
2.64 Bridge BEF, ooreeeerieeniininnn 428
2.7 FPHBHE - ccovrrrererrrninennan 428
270 HEANER e 429
2.72 CommandFrH 7 ---voreenees 429
273 BUGSFIEML - vveeeereeoeneeen 430
274 QIATHERIDTE oovrrereeererennees 431
275 Commandilizh, <« -errvreeerernnnees 432
2.8 PR ELEE cooereeereeenne 432

2.8.1 PRoBEHER

282 ﬁ%l}'ﬂ[}]*uﬁﬁj‘ 433
2.83 lteratorP Jp H T oooeevreennnns 434
2.84 lteratordlizts «o-reeverrieriiiinnn 436
2.8.5 wpfnehi Bayate o 436
2.8.6 HEESMF oo 437
287 VlSltOl‘%&ﬁ%% 440
288 VlSltor*Eit 441
2.9 JNEE e 44]
H3F RABABR 442
3.1 ABSTRACT FACTORY (#i&T.J")
— W RAVERIRER e 445
3.2 BUILDER (&%) —¥%
BUEAREE - 452
3.3 FACTORY METHOD (T.J 5#&) ——
FRONBARER - 458
34 PROTOTYPE (JFH) —3t%
BIHRIREEL e 466
3.5 SINGLETON (#fk) — %%
BIBAIRE e 473
3.6 @[j@&”ﬁﬁ&{]vfﬁz 478
%4% %ﬁ]iﬂ’fﬁiﬁ 480
4.1 ADAPTER (GEREC#E) — %X ER
FEHRBET -oroeere 481
4.2 BRIDGE (###) —— Xt REEHRY
*ﬁﬁ 489
43 COMPOSITE () —%
HERRIBEFE e 497
4.4 DECORATOR (#ffi) — %%
FEAGRIREA o 505
4.5 FACADE (JMIl) ——XREEHR)
B e 511
46 FLYWEIGHT (%) —%%
%*@gg*ﬁiﬁ 518
4.7 PROXY (fH) ——t&Re5#%)
B e 527
4.8 %*@?ﬂ’lﬁiﬁﬂ‘]ﬁl’é 535
4.8.1 Adapterf5Bridge -co-oeeeeeeen 535

XI

4.8.2 Composite, Decorators

Pl'OXy 535
gsﬁ T AR TS T PR PR PP P T PPRS 537
5.1 CHAIN OF RESPONSIBILITY
(RFEHE) —HRITHBEA - 537
52 COMMAND (&4&) —3&
FPARIRER, e 545
5.3 INTERPRETER (ff%:%%)
—if}%ﬂ*ﬁﬁ 552
54 ITERATOR (&%ft3) —3%
??%Jggﬁit 562
5.5 MEDIATOR (dh4r#) —H%
FTABREZ o 572
5.6 MEMENTO (&) —*%%&
?}%ﬂﬁﬁ 579
5.7 OBSERVER (Wg2¥) — %%
4?%?2&3:‘ 586
5.8 STATE (R&) —XRITHR
*ﬁﬁ 593
59 STRATEGY (HES) —H%&
FTHRIBR oo 600
5.10 TEMPLATE METHOD (&K
jj‘%) _;si?%j@&it 607
5.11 VISITOR (ijlalg) — R
?“fﬂjﬂ*ﬁﬁ 610
5.02 T ARERITTIE oo 620
SA2 1 FHEEASff eeerereriee 620
5122 ﬁ%{lﬁ%%&ﬁ 621
5123 EERORMEE T
%Tﬁ 621
5024 REEABHERE - 622
5025 BEE e 623
%6% %‘Vﬁ 625
61 l§i+*§it4%¢%*{+2\ 625
62 ggiﬁ}iﬁﬁﬁjiﬁti‘uﬂ& 625
6.3 BEIRIF)RR T e 626

6.4 BB HHERI—FIRTE co-ooeerreeenns 626

XII

6.5 BHIPJEER «ororeerrreemm 627
6.6 *%I’gi Q 627
6.7 ﬁitﬁ' 628
6.8 Alcxander%ﬁiﬁi&%‘ 628
6.9 ﬁﬁ:q]mﬁit 629

6.10 FBERE oo 630

6.11 (B e 630
Pﬂ-iA ﬁ]lt?ﬁ 631
Mt %B @fﬁﬁ%%ﬁ 634

PH'S?{C g;‘;% 637

Chapter 1

Introduction

Designing object-oriented software is hard, and designing reusable object-oriented soft-
ware is even harder. You must find pertinent objects, factor them into classes at the
right granularity, define class interfaces and inheritance hierarchies, and establish key
relationships among them. Your design should be specific to the problem at hand but
also general enough to address future problems and requirements. You also want to
avoid redesign, or at least minimize it. Experienced object-oriented designers will tell
you that a reusable and flexible design is difficult if not impossible to get “right” the first

time. Before a design is finished, they usually try to reuse it several times, modifying it
each time.

Yet experienced object-oriented designers do make good designs. Meanwhile new
designers are overwhelmed by the options available and tend to fall back on non-
object-oriented techniques they’ve used before. It takes a long time for novices to learn
what good object-oriented design is all about. Experienced designers evidently know
something inexperienced ones don’t. What is it?

One thing expert designers know ot to do is solve every problem from first principles.
Rather, they reuse solutions that have worked for them in the past. When they find a
good solution, they use it again and again. Such experience is part of what makes them
experts. Consequently, you'll find recurring patterns of classes and communicating
objects in many object-oriented systems. These patterns solve specific design problems
and make object-oriented designs more flexible, elegant, and ultimately reusable. They
help designers reuse successful designs by basing new designs on prior experience.
A designer who is familiar with such patterns can apply them immediately to design
problems without having to rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design
their plots from scratch. Instead, they follow patterns like “Tragically Flawed Hero”
(Macbeth, Hamlet, etc.) or “The Romantic Novel” (countless romance novels). In the
same way, object-oriented designers follow patterns like “represent states with objects”

2 INTRODUCTION CHAPTER 1

and “decorate objects so you can easily add/remove features.” Once you know the
pattern, a lot of design decisions follow automatically.

We all know the value of design experience. How many times have you had design déja-
vu—that feeling that you’ve solved a problem before but not knowing exactly where or
how? If you could remember the details of the previous problem and how you solved
it, then you could reuse the experience instead of rediscovering it. However, we don’t
do a good job of recording experience in software design for others to use.

The purpose of this book is to record experience in designing object-oriented software as
design patterns. Each design pattern systematically names, explains, and evaluates an
important and recurring design in object-oriented systems. Our goal is to capture design
experience in a form that people can use effectively. To this end we have documented
some of the most important design patterns and present them as a catalog.

Design patterns make it easier to reuse successful designs and architectures. Expressing
proven techniques as design patterns makes them more accessible to developers of
new systems. Design patterns help you choose design alternatives that make a system
reusable and avoid alternatives that compromise reusability. Design patterns can even
improve the documentation and maintenance of existing systems by furnishing an
explicit specification of class and object interactions and their underlying intent. Put
simply, design patterns help a designer get a design “right” faster.

None of the design patterns in this book describes new or unproven designs. We have
included only designs that have been applied more than once in different systems. Most
of these designs have never been documented before. They are either part of the folklore
of the object-oriented community or are elements of some successful object-oriented
systems—neither of which is easy for novice designers to learn from. So although these
designs aren’t new, we capture them in a new and accessible way: as a catalog of design
patterns having a consistent format.

Despite the book’s size, the design patterns in it capture only a fraction of what an expert
might know. It doesn’t have any patterns dealing with concurrency or distributed pro-
gramming or real-time programming. It doesn’t have any application domain-specific
patterns. It doesn’t tell you how to build user interfaces, how to write device drivers,
or how to use an object-oriented database. Each of these areas has its own patterns, and
it would be worthwhile for someone to catalog those too.

1.1 What Is a Design Pattern?

Christopher Alexander says, “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over, without ever
doing it the same way twice” [AIS*77, page x]. Even though Alexander was talking
about patterns in buildings and towns, what he says is true about object-oriented design
patterns. Our solutions are expressed in terms of objects and interfaces instead of walls

SECTION 1.1 WHAT IS A DESIGN PATTERN? 3

and doors, but at the core of both kinds of patterns is a solution to a problem in a
context.

In general, a pattern has four essential elements:

1. The pattern name is a handle we can use to describe a design problem, its so-
lutions, and consequences in a word or two. Naming a pattern immediately
increases our design vocabulary. It lets us design at a higher level of abstraction.
Having a vocabulary for patterns lets us talk about them with our colleagues,
in our documentation, and even to ourselves. It makes it easier to think about
designs and to communicate them and their trade-offs to others. Finding good
names has been one of the hardest parts of developing our catalog.

2. The problem describes when to apply the pattern. It explains the problem and its
context. It might describe specific design problems such as how to represent algo-
rithms as objects. It might describe class or object structures that are symptomatic
of an inflexible design. Sometimes the problem will include a list of conditions
that must be met before it makes sense to apply the pattern.

3. The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution doesn’t describe a particular
concrete design or implementation, because a pattern is like a template that can
be applied in many different situations. Instead, the pattern provides an abstract
description of a design problem and how a general arrangement of elements
(classes and objects in our case) solves it.

4. The consequences are the results and trade-offs of applying the pattern. Though
consequences are often unvoiced when we describe design decisions, they are
critical for evaluating design alternatives and for understanding the costs and
benefits of applying the pattern.

The consequences for software often concern space and time trade-offs. They
may address language and implementation issues as well. Since reuse is often a
factor in object-oriented design, the consequences of a pattern include its impact
on a system’s flexibility, extensibility, or portability. Listing these consequences
explicitly helps you understand and evaluate them.

Point of view affects one’s interpretation of what is and isn’t a pattern. One person’s
pattern can be another person’s primitive building block. For this book we have concen-
trated on patterns at a certain level of abstraction. Design patterns are not about designs
such as linked lists and hash tables that can be encoded in classes and reused as is. Nor
are they complex, domain-specific designs for an entire application or subsystem. The
design patterns in this book are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design. The design
pattern identifies the participating classes and instances, their roles and collaborations,

4 INTRODUCTION CHAPTER 1

and the distribution of responsibilities. Each design pattern focuses on a particular
object-oriented design problem or issue. It describes when it applies, whether it can be
applied in view of other design constraints, and the consequences and trade-offs of its
use. Since we must eventually implement our designs, a design pattern also provides
sample C++ and (sometimes) Smalltalk code to illustrate an implementation.

Although design patterns describe object-oriented designs, they are based on practical
solutions that have been implemented in mainstream object-oriented programming
languages like Smalitalk and C++ rather than procedural languages (Pascal, C, Ada) or
more dynamic object-oriented languages (CLOS, Dylan, Self). We chose Smalltalk and
C++ for pragmatic reasons: Our day-to-day experience has been in these languages,
and they are increasingly popular.

The choice of programming language is important because it influences one’s point
of view. Our patterns assume Smalltalk /C++-level language features, and that choice
determines what can and cannot be implemented easily. If we assumed procedural
languages, we might have included design patterns called “Inheritance,” “Encapsu-
lation,” and “Polymorphism.” Similarly, some of our patterns are supported directly
by the less common object-oriented languages. CLOS has multi-methods, for example,
which lessen the need for a pattern such as Visitor (page 331). In fact, there are enough
differences between Smalltalk and C++ to mean that some patterns can be expressed
more easily in one language than the other. (See Iterator (257) for an example.)

1.2 Design Patterns in Smalltalk MVC

The Model/View /Controller (MVC) triad of classes [KP88] is used to build user inter-
faces in Smalltalk-80. Looking at the design patterns inside MVC should help you see
what we mean by the term “pattern.”

MVC consists of three kinds of objects. The Model is the application object, the View is
its screen presentation, and the Controller defines the way the user interface reacts to
user input. Before MVC, user interface designs tended to lump these objects together.
MVC decouples them to increase flexibility and reuse.

MVC decouples views and models by establishing a subscribe/notify protocol between
them. A view must ensure that its appearance reflects the state of the model. Whenever
the model’s data changes, the model notifies views that depend on it. In response, each
view gets an opportunity to update itself. This approach lets you attach multiple views
to a model to provide different presentations. You can also create new views for a model
without rewriting it.

The following diagram shows a model and three views. (We've left out the controllers
for simplicity.) The model contains some data values, and the views defining a spread-
sheet, histogram, and pie chart display these data in various ways. The model commu-
nicates with its views when its values change, and the views communicate with the
model to access these values.

