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Part I General Basic Knowledge

Chapter 1 Calculus

1.1 Derivative

The derivative of a function is the first of the two major concepts of calculus. Together
with the integral, it constitutes the source from which calculus derives its particular flavor. The
concept will be introduced with the intimate connection between the mathematical concepts and
certain physical ideas. In fact, the demands of physics were the original inspiration for these
fundamental ideas of calculus. So, we shall first define the ideas in precise mathematical form,
and discuss their significance in terms of mathematical problems, then mention the physical in-
terpretations.

To understand the derivative, we can start from the tangent line of a curve. As the illus-
tration in the Figure 1.1, the definition of a tangent line might start with “secant lines,” and
use the notion of limits. If 250, then the two distinct points (a, f (a)) and (a + h, f
fla+ h})l—f(a)-

(a + h)) determine, a straight line whose slope is

The “tangent line” at (a, f (a))
seems to be the limit, in some sense, of
these “secant lines” as h approaches 0. And
the limit of the slope of the tangent line
through (a, f (a)) should be lim

fla+h)-f(a)
; )

Now we can give the definition ,

The function f is differentiable at a if
i @+ h) = fa) :
tt 3

exists.

Figure 1.1 The tangent line of a curve
And the limit is denoted by f’(a) and

is called the derivative of f at a. Or we can say that function f is differentiable only if f is
differentiable at a for every a in the domain of f.

As an addendum, we define:

The tangent line to the graph of function f at (a, f(a)) is the line through(a, f(a))
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with slope f' (a). This means that the tangent line at (a, f(a)) is existed only if function f
is differentiable at a.

Concerning the notation of the derivative of function f, the symbol f’(a) is a certainly
reminiscent. Moreover, for the derivative of any function f, we denote by f’ that the function
whose domain is the set of all numbers a is differentiable at @ , and whose value at such a

ﬁ,rffolf(a+h,)l_f(a)-

number a is

Refers to the physical interpretation of the derivative, let’s consider a particle which is
moving along a straight line (Figure 1.2) on which we have chosen an “origin” point O, and
a direction in which distances from O shall be written as positive numbers, the distance from O
of points in the other direction being written as negative numbers.

Y 1 Let s(t) denote the distance of the
1= =

motion of the particle— particle from O, at time ¢. Since a dis-
>’=2 tance s(¢) is determined for each number
=5 t=4 =3

i t, the physical situation automatically

—— Positive Direction supplies us with a certain function s.
& [ | [l . . .
0 Line al'ong whicll\ particle is moving The gtaph of s( t) indicates the dis-

. tance of the particle from O, on the verti-
Figure 1.2 A particle moving along a straight line cal axis, in terms of the time, indicated
on the horizontal axis (Figure 1.3).

to +At) — s(t,
The quotient stio + A)t s( O)has a natral physical interpretation. It is the “average

velocity” of the particle during the time interval from #, to #y + At. For any particular #,, this

to +Ar) - s(¢
average speed depends on A. On the other hand, the limit lim sCto + A)t $%0) opends

only on ¢, as well as the particular function s(¢). .

Conventionally, we would like to speak of the “velocity of the particle at time #,,” but
the usual definition of velocity is really a definition '
of average velocity; the only reasonable definition of

“velocity at time #,” (so-called “instantaneous ve- I
ty 0 ( ( ) ( ) Distance L Graph of s(#)
[N RN ST s tO +At -5 t()
i .
locty)lsthelmntAhrr.l(l) A7
Therefore, we define the (instantaneous) ve- Time \

locity of the particle at 1p to be s'(ty) — the deriv-
ative of s (t) at ty. And the absolute value Figure 1.3 The graph of s(1)
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I's"(t)! is sometimes called the (instantaneous) speed .

The velocity of a particle is often called the “rate of change of its position. ” This notion

of the derivative, as a rate of change, could apply to any other physical situation in which
some quantity varies with time. For example, the “rate of change of mass” of a growing ob-
ject, .m’ (t), means the derivative of the function m, where m(¢) is the mass at time ¢.

New Words and Expressions

derivative [di'rivetiv] n. 4, A, IRAERFEY, IRAF adj. 5IHH, R
calculus [ ‘kelkjulss] n. B, B(H]1E

integral ['intigrol] adj. 5E#EHY, AW, B, MBRBEFTEEN ;0. By, 7
%, o

inspiration [ inspo’reifon] n. R &

interpretation [ inito: pri’teifon] n. %%, M, 0%, @iF

tangent [ ‘tendent] n. YJ£R, IEY]; adj. B, YILRM, MUK, K
secant [ 'si:kont] adj. Y18, $IH, XX H;n. 8L, EY

addendum [o'dendam] n. %higt, B

vertical ['va:tikal] adj. BEH, HV A, TUEHN;n. BHR, BHE, BH
horizontal axis 7K -4 (£%)

quotient [ 'kwaufont] n. 7, 3%

instantaneous [ inston’teinjos] adj. B8] &Y., BDZIfY, BPEtHY

Notes

The concept will be introduced with the intimate connection between the mathematical
concepts and certain physical ideas. ZBEEH SE S BEAME S IFEH YA X
ZER R HBR R MU A,

The tangent line of a curve. HHZRHITIZ .

Moreover, for the derivative of any function f, we denote by f’ that the function whose
domain is the set of all numbers a is differentiable at a, and whose value at such a num-

beraislikgol (a+h,)l— (a) . /a] the set of all numbers a, 5T BT a WESL,

“origin” point O. (A458)JFA O, _

The graph of s(¢) indicates the distance of the particle from O, on the vertical axis, in
terms of the time, indicated on the horizontal axis. FI&Y s(¢) 5, YA HH{0 3% Bk BE
R R, SRt ,

The velocity of a particle is often called the “rate of change of its position. ” $URL i) 38 /&
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Questions for Discussion

How do you define the derivative of f at a in precise mathematical form?

Why is the velocity of a particle called the rate of change of its position?

What is the intimate connection between the mathematical concepts and certain physical
ideas for the derivative in the text.

What is the meaning of limf(a +h) -f(a)?
pee) h
Give the definition of average velocity of a particle according to the text.

Match the following words in column A with the statements in column B

A B

[J particle a. A variable so related to another that for each value assumed by
one there is a value determined for the othier.

(] derivative b. A method of analysis or calculation using a special symbolic nota-
tion

[] interpretation ~ c¢. Stimulation of the mind or emotions to a high level of feeling or
activity ‘

[ intimate d. Occurring or completed without perceptible delay

[J secant e. Something added

[ addendum f. A straight line intersecting a curve at two or more points.

[] instantaneous ~ g. To make known subtly and indirectly
[ inspiration h. An explanation

[J calculus i. The limiting value of ‘the ratio of the change in a function to the
corresponding change in- its independent variable
[[] function j. A very small piece or part; a tiny portion or speck

Translate the following sentences into Chinese

Conventionally, we would like to speak of the “velocity of the particle at time £,,” but
the usual definition of velocity is really a definition of average velocity; the only reason-
able definition of “velocity at time #,” (so-called “instantaneous velocity”) is the limit
1o S0 +A1) - s(1o)

A0 At

The velocity of a particle is often called the “rate of change of its position. ” This notion
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of the derivative, as a rate of change, could apply to any other physical situation in which
some quantity varies with time. For example, the “rate of change of mass” of a growing
object, m’(t), means the derivative of the function m, where m(t) is the mass at time
t.

1.2 Integral

The concept of integral is more complicated than the concept of derivative. To understand
integrals, we does need make a long preparation, but once this preliminary work has been
completed, integrals and its significance will be understood straightforward. Although ultimate-
ly to be defined in a quite complicated way, the integral could start with formalizing a simple,
intuitive concept-that of area. By now it should come as no surprise to learn that the definition
of an intuitive concept can present great difficulties-“area” is certainly no exception.

Basically, we try to define the area of

some very special regions (Figure 1.4)-those
that are bounded by the horizontal axis, the f e
vertical lines through (@, 0) and (b, 0), and ‘ 7

the graph of a function f such that f(x) =0 @0 .0
forall x in[a, b].

It is convenient to denote this region by R Figure 1.4 The area of some
(f, a, b). In these regions, they include re- very special regions

ctangles and triangles, as well as many other
important geometric figures. The value that we will eventually assign as the area of R (f, a,
b) will be called the integral of function f on [a, b]. '

The idea behind the prospective definition is indicated in Figure 1.5. The interval [ a,
b] has been divided into finite subintervals [ #o, #;]1 [t;, t,] [t2, 5] [ti 1, 2], by

means of numbers to, t1y ty, v, t, with a

f = < H< < < t,=b.
On the first interval [ ¢,, ¢, the function
f has the minimum value m; and the maximum
_[ value M,; similarly, on the ith interval
(a,0) *. 0 [#;_1, ;] let the minimum value of f be m;
Figure 1.5 The idea behind the and let the maximum value be M, . The sum s

prospeetive definition .« = m(ti- tg) + m(t, - t;) + my(t5
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~ t) +++ m,(t, - t,.,) represents the total area of rectangles lying inside the region R
(f, a, b), whilethe sum § = M,(t; - t5) + My(t, - t;) + My(t5—- 1) + +
M,(t, ~ t,_;) represents the total area of rectangles containing the region R (f, a, b).
The guiding principle of our attempt to define the area A of R (f, a, b) is the observation
that A should satisfy s< A and A< S, and that this should be true, no matter how the inter-
val [ a, b] is subdivided.
DEFINITION:
Suppose f is bounded on [a bland P = {ty,-, t,} is a partition of [a, b]. Let
inf {f (x): t;i_1< x < 4},
i-SuP{f(x) o< x < gt
The lower sum of f for P, denoted by L (:f, P), is defined as

L(f,P) = 2 m(t; - i)
i=1
The upper sum of f for P denoted by U (f, P), is defined as

U(f,P) = ZlMi(ti - tiy)

However, that despite the geometric motivation, these sums have been defined precisely
without any appeal to a concept of “area

Two details of the definition deserve comment. The requirement that J be bounded on
[a, b] is essential in order that all the m; and M, be defined. Also, that it was necessary to
define the numbers m; and M; as inf's and sup’s, rather than as minima and maxima, since f
was not assumed continuous.

One thing is clear about lower and upper sums: If P is any partition, then obviously L
(f,P)< U(f,P), and for each i we have m;(t; — t;_;) < M;(t;-t,_,).

On the other hand, something less obvious ought to be true: If P, and P, are any two
partitions of [a, b], then it should be the case that L(f, P;) < U(f, P,), because L (f,
P,;) should be < area R (f, a, b), and U (f, P,) should be > area R (f, a, b). To
proof this case, we are about to give depends upon a lemma, which concerns the behavior of
lower and upper sums when more points are included in a partition.

LEMMA ; '
I Q contains P (i.e., if all points of P are also in Q), then
L(f,P)<L(f, Q)
U(f, P) = U(f, Q)
The partition Q can be obtained from P by adding one point at a time; in other words,
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there is a sequence of partitions P = Py, P,, ***, P, = Q such that P;,, contains just one
more point than P;. Then

L(f, P) = L(f, P\) <L(f, P,) < <L(f, P,) = L(f, Q)
and

U(f, P) = U(f, Py) 2U(f, P,) == =2U(f, P,) = U(f, Q)

Based on this lemma, we can prove the f;‘onsequence of that case simply.

There is a partition P that contains both P, and P, (let P consist of all points in both P,
and P,). According to the lemma,

L(f, P\) <sL(f,P)<U(f, P)<UC(f, Py)

Therefore, that any upper sum U (f, P’) is an upper bound for the set of all lower sums
L (f, P). That means any upper sum U (f, P’) is greater than or equal to the least upper
bound of all lower sums: sup {L (f, P): P apartitionof [a, b]} <U (f, P'), for ev-
ery P’

It may well happen that sup { L (f, P)! = inf {U (f, P)!}; in this case, this is the
only number between the lower sum and upper sum of f for all partitions, and this number is
consequently an ideal candidate for the area of R(f, a, b).

On the other hand, if sup {L (f, P)} < inf {U (f, P)}, then every number x be-
tween sup { L(f, P)} and inf { U(f, P)| will satisfy L (f, P’) <x <U (f, P') forall
partitions P’ .

DEFINITION:

A function f which is bounded on [ a, b] is integrable on [ @, b] if sup {L (f, P): P

a partition of [a, b] | = inf { U (f, P): P a partition of [a, b] }. In this case, this

b
common number is called the integral of f on [a, b] and is denoted byJ f(x) .

b
(The symbol J‘ f(x) is called an integral sign and was originally an elongated s, for
“sum;” the numbers a and b are called the lower and upper limits of integration.) The inte-
b
graljf(x) is also called the area of R(f, a, b) when f(x)=0forall x in [a, b].

b
If f is integrable, then according to this definition, L( f, P)sjf(x) < U(f, P) for
o
all partitions P of [a, b]. Moreover, J f(x) is the unique number with this property.

New Words and Expressions
e preliminary [ pri'liminori] adj. Bi& &), ¥



Bt T %iE

straightforward [ streit'fo: wod] adj. fRJSALAY, EHEE T HK); adv. HEH, HETY
b

intuitive[ in’tju( ; )itiv] adj. ELVRAY , HREHY

rectangle [ 'rektengl] n. K FIE, HIE

triangle ['traiengl] n. =M, ZA—4H, ZMAXEK

geometric [ dio'metrik] adj. JUfA A, JUIA2##0

requirement [ ri’kwaiomont ] n. BE KM, TR, BR FEHARE, BRLHFHFR
%

assign [o'sain] vt.53BC, F8UK; v. W1

prospective| pros’pektiv] adj. FHA K, KK/

subinterval [ /sab’intevel ] n. FIX |8

subdivide [ 'sabdi'vaid] v. -4, 4043

deserve [di'zo:v] vt. 3%, {H8;v. N

lemma ['lemo] n.5138, HBIEH, A, F8, CCEBRAK)GE, (JHE)IA
%

consequence [ 'konsikwens] n.Z55%, [ 1M, #it, HRXAR, EEMNMNA
elongate ['i:longeit] v. R, (), K adj KK n BIK, K

Notes

By now it should come as no surprise to learn that the definition of an intuitive concept
can present great difficulties-“area” is certainly no exception. % I, , AT T4 7R E 4R #b 41
BT T)A—NERBEE T RS B E A E L— 4R ER AR
Bish,

The value that we will eventually assign as the area of R (f, a, b) will be called the in-
tegral of function fon [a, b].YEHX R (f, a, b)EH, BITERKER FH{ER B
FA RS £ 2E 0, b] LRI,

However, that despite the geometric motivation, these sums have been defined precisely
without any appeal to a concept of “area. ”#AT , Toi® JLIA & A SHHLANT , 53X 6 &8 A
BAAEMEANESRE 288 THRNE L.

Questions for Discussion

How can we understand the concept of integral and its significance with area?

b
What is the meaning of the symboljf(x) ?



