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Preface

This book is intended to be as a textbook for graduate students or under-
graduate students for their last year. The guiding principle followed is that all
definitions, theorems, etc., should be clearly and precisely stated. Proofs are
given with the student in mind. Most are presented in detail and step by step,
indicated the sub-goal for each step if possible. When this is not the case, the
reader is told precisely what is missing and asked to fill in the gap as exercise
which is meant to fix the ideas of the section in the reader’s mind.

This book is organized as follows:

In Chapter 1, we give the fundamental questions and basic ideas of varia-
tional method.

In Chapter 2, we recall some basic definitions and useful inequalities of
Sobolev spaces, which turn out to be the proper setting in which to apply ideas of
functional analysis to get information concerning partial differential equations.

Chapter 3 is concerned with calculus in Banach space, various derivatives
of functionals defined on Banach space and critical points of differentiable func-
tionals regarded as the weak solutions of PDE are introduced.

In Chapter 4, we study the direct methods to solve extremal problems. Some
variants of direct methods, such as Lagrange multiplier method, weak sub- and
super-solutions method and Nehari manifolds, are presented with examples.

In Chapter 5, we established some deformation theorems with or without
(PS) condition, which will be the base-stone for minimax theorems.

In Chapter 6, we first present a somewhat general minimax principle, then
study the Mountain Pass Lemma and its variants, the Index Theory and the
Linking Argument as the consequences of the general principle. Several applica-
tions to semilinear or quasilinear elliptic equations are given.

In Chapter 7, using the Pohozaev type variational identity and the concen-
tration compactness principle, we study the nonexistence and existence of non-
compact variational problems, which include problems involving critical Sobolev
exponents and the problems on unbounded domain as examples.

Chapter 8 includes the newly obtained results about the existence and nonex-
istence of solitary solutions to the Generalized Kadomtsev-Petviashvili (GKP)
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equation in higher dimensional space and that of stationary solutions to the GKP
equation in bounded domain. This chapter can be taken as applications of the
Mountain Pass Lemma, the Pohozaev type variational identity.

Chapter 9 is concerned with the problem of best constants in Sobolev in-
equalities and its extremal functions (if exist), which had played very important
role in the study of problems involving critical Sobolev exponents in bounded’
or unbounded domains. There are extremely many results in this direction, we
make a review only for a small part of all the references concerning it.

In Appendix, we briefly discuss the well known De Giorgi-Nash-Moser reg-
ularity theory of weak solution to elliptic equations. In order to explain ideas
clearly, we will only discuss the linear equations in divergence form, but the idea
is easy to be extended to quasilinear elliptic equation, because that the linearity
has no bearing in their arguments.
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Chapter 1

Introduction

1.1 Basic ideas of variational methods

What is the variational method, or the calculus of variations? This is a
method to select the best among a variety of objects, it is the following process:

(1) Gather all relevant objects into a space X; (For P.D.E., we will appeal
to some appropriate Sobolev space. See Chapter 2 for Sobolev space:)

(2) Take an appropriate function (or functional) E on X. If E is appropriate
for the purpose, then the minima or maxima of E in X are the best objects.

It has a long history and refreshes its face according to the developments
of mathematics and other sciences. Laws in astronomy, mechanics, physics,
all nature sciences and technologies as well as in the economy behavior obey
variational principles. From the time of Newton, Leibnitz, Euler and Lagrange,
the variational method has been carried out as follows:

(1) On the space X, one may consider the concept of the differential E' of
E; (See Chapter 3, the calculus in Banach space.)

(2) If zp € X is best, then it should attain the maximum or minimum of E.

So the derivative of E vanishes at xg, i.e.,

E'(z9) = 0.

(3) The point z( satisfying E’(zq) = 0 (called a critical point of E) could
be written and characterized in term of some differential equation (called the
Euler-Lagrange equation).

(4) Thus, it remains only ta solve this differential equation.

This is the classical process of variational method, which deals with minima
or maxima by solving the Euler-Lagrange equation. Since the Euler-Lagrange
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equation is only a necessary condition for minima or maxima, a second order
differential condition has to be derived in verifying the minimality or maximality.
However, only very few Euler-Lagrange equations can be solved explicitly. The
method is limited in applications.

Conversely, in his study of conformal mappings, Dirichlet introduced the
so-called Dirichlet principle, i.e., ﬁndlng a minimizing sequence {fcn},kl cX:

E(x,) — inf{E(z) : z € X},
if one can show that R - S
Tn — To € X in some sense such that

E(z,) — E(zo),

then zg solves the Euler-Lagrange equation. This provides a direct method which
can be used to solve differential equations as follows:

(1) One should solve some differential equation which is important but dif-
ficult to solve;

(2) To solve this equation, one could consider a certain space X and a func-
tion (or functional) E on X in such a way that the Euler-Lagrange equation
associated with E, i.e., E'(zg) =0 corresponds to the equation in question.

(3) Then one may only find a maximum or minimum of E on X.

For many interesting problems in mathema.tlcs and physms, one could for-
mulate the calculus of variations in this way, but it often happens that both to
find maxima and minima of E and to solve the corresponding Euler-Lagrange
equation are very difficult. '

Let’s formally formulate the process of the variational method as follows.
Many boundary value problems are equivalent to the following operator equation:

Au =0, : (1.1.1)

where A : X — Y is a mapping between two Banach spaces. The problem
(1.1.1) is called a variational problem, if there exists a differentiable functional
¢: X — R such that A = ¢/, i.e,

é(u + tv) — d(u) .
t

< Au, v>= hm

The s;;ace Y corresponds then to the topological dual X’ of X and Eg.
(1.1.1) is equivalent to ¢'(u) =0, i.e.,

< ¢(u), v>=0, Vv € X. ' (1.1.2)
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A function u € X is called a critical point of ¢, if it is a solution of (1.1.2),
and then the value of ¢ = ¢(u) is called a critical value of ¢ if u is a critical
point.

Question 1: How to find critical values and critical points?

When ¢ is bounded from below, the infimum

ci= 151(f¢

is a natural candidate.
Question 2: Is the infimum always a critical value?

- In 1895, Weierstrass [93] constructed a counter-example: To find a continu-
ously differentiable function u : [~1,1] — R minimizing integral

L du
I(u) = —2

subject (for instance) to boundary conditions u(+1) = £1. Choosing

arctan(Z)

Weierstrass was able to show that the infimum of T in the above class was 0
(Exercise); however, the value 0 is not attained, since this means that « =0 on
[-1,1], which contradicts the boundary condition.

In 1900, Hilbert, in his speech at the International Congress in Paris, pro-
posed his famous 23 problems - three of which devoted to questions related to
the calculus of variations.

In 1970s, Ekeland discovered the so-called Ekeland Variational Principle
which implies the existence of the minimizing sequence with some fine properties;’
In 1960s, Palais and Smale (cf. (71, 82]) introduced the concept of the so-called
Palais-Smale condition (Abbr. (PS) condition), which will also guarantee the’
convergence not only for a minimizing sequence, but also for (PS) sequence. We
shall show that if the (PS) condition holds and the corresponding function E
is bounded below, then E attains a minimum, which gives the desired answer!
Otherwise, the problems are very difficult. It so happens that many interesting
problems from geometric problems and physical problems do not satisfy (PS)
condition, but F has a minimum. (cf. Chapter 4 for details.)

Question 3: Does there exist any other critical point rather than the minimizer?

In 1929, Ljusternik and Schnirelman [60] obtained the existence of three
distinct closed geodesics on any compact surface of genus zero. From then on,
we no longer consider only minimizer (or maximizer) of variational integrals,
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but instead look at all their critical points — the calculus of variations in the
large or global variational method. In 1930s, they [61} developed the so—called :
Ljusternik-Schnirelman theory. :

The work of Ljusternik-Schnirelman revealed that much of the complexity
of a function space is invariably reflected in the set of critical points of any
variational integral defined on it. '

In 1934, M. Morse [65] developed another approach towards a global the-
ory of critical points. Morse’s work also revealed a deep relation between the
topology of a space and the number and types of critical points of any function
defined on it.

In this part, we will study the Minimax Method, including the Mountain
Pass Lemma, the Zs index theory, the Linking Argument and its applications
in elliptic equations.

Usually, the Minimax Method consists of three steps:

(1) A-priori compactness condition, such as (PS). condition;

(2) Deformation Lemma depending on this condition;

(3) Construction of a critical value.

1.2 Classical solution and generalized solution

Let us start from an example of the boundary value problem of linear elliptic

equation:
{ Au = f(z), = € 12, (1'2'1)
u=0, x € 012,
where {2 C R" is bounded domain with smooth boundary, e.g, 82 € C!, f €
Co(£2).

‘u(z) : 2 — Ris a classical solution of (1.2.1) if u € C(£2) N 02(.(2) and sat-
isfies problem (1.2.1). How about the existence of classical solutions of (1.2.1)?
Since a classical solution is required to be second order continuously differen-
tiable, the space of admissible functions is too small. In most cases, it is very
difficult to find a classical solution.:

In order to enlarge the space of admissible functions, let us multiply the
equation in (1.2.1) by a smooth test function v € C§°(§2), and 1ntegrate over 2
by parts, to find

/{}Du-DvdJ::/nf(z)vdw. (1.2.2)

It is easy to verify that equality (1.2.2) is true for all v € C§°(£2) if u is
a classical solution of (1.2.1); reversely, in order to make the integration of
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the left-hand side of (1.2.2) meaningful, one can just require that: for example,
u € C(£2) N C3(£2) or even the Sobolev space H}(12).

A generalized SQlutioﬂ of (1.2.1) is a function u in some space of admissil
functions, which makes the equality of (1.2.2) be true for all v- € C§°({2). '
Next, consider an extremal problem of functional: For a given function

f € Cy(R), define functional I : C}(£2) — R:
| I(v) = / (z|Dv]? _f fv) dz. | (1.2.3)'\,

The extremal problem ( variational problem) is to find a minimizer u € C§(£2)
such that

erg}?g) I(v) = I(u). (1.2.4)

As we are familiar with the extremal problem of functions with single ar
several variables, we want to solve the extremal problem of functionals, using
the results or the methods of that of functions. There are two ways: One is to
define a function from the functional, and then solve the extremal problem of
that function. We will show the idea below; The other is to use the methods or
the ideas which are used to deal with the extremal problem of functions, such
as derivatives, critical points and so on, we will make this clear in the following
chapters.

Now, let us show the idea of the first way. Let ¢ € C§°(£2), t € R, since
u € CL(12), u + typ € C}(12), define a function with single variable J : R — R:

t? 9
I = I+ tg) = 5 /O Dy dz +t /n (Du-Dp ~ fp)do+I(u).  (1:2:5)

If u is solution of the extremal problem (1.2.4), the function J(t) € C*(R)
attains its minimum at ¢ = 0. From the theory of Calculus, the necessary
condition under which the function J(¢) attains its minimum at { =0 is

d‘](t) ——|,o =0 (1.2.6)

Simple calculation shows
dJ(t ’
0=, = [ (Du-Dy— fo)az,

which is equivalent to the equality (1.2.2).
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1.3 First variation, Euler—Lagrange equation

In this section, we first state the fundamental theorem of calculus of vari-
ations, and then formally derive the Euler—Lagra,nge equatlon, finally illustrate
the process by some concrete examples.

Let’s recall the fundamental theorem of calculus of varla,tlons as follows

Theorem 1.3.1 (Fundamental Theorem of Calculus of Variations) If a
function u € C(§2) satisfies

[ u@e@)ax=0, voecF@),
[
thgn u=0 in £2.

Proof. By contradiction, assume that there exists a point zp € §2 such that
u(xzp) # 0, say u(zp) > 0. From the continuity of function u, there exists an
open neighborhood B,(zo) C 2 of o, 7 > 0, such that u(z) > u(xe)/2 > 0 for
all z € B, (:Eg)

Choose the test function ¢ as:

{exp{ Fﬁjszoa‘sHP} if x € By(xo);

if 2 € 2\ By(xo).

It is easy to show that ¢ € C§°(£2), p(z) > 0, V = € B,(xg). Thus, it follows
that

/Q uw(z)p(z)de = /B - )u(m)w(a:) dz > u(;‘o) e(z)dz > 0,

Br(:co)

which contradicts to the assumption, and implies the desired result. ]

Let 2 C R™ is bounded domam with smooth boundary a92, and we are given

a smooth function
L: ]R" xR x 2 - R.

We call L = L(p, z,z) = L(p1,** ,Pn, 2, %1,"** ,Tn) the Lagrangian. Define
the energy functional I : CA(£2) — R by

1] = /Q L(Dv(z), v(z), z) dz. (1.3.1)

Suppose some u € C}(2) happens to be a minimizer of I[-]. We explicitly
compute the first variation 6I(u) of I|-] at u. For any function v € C§°(£2);



