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Abstract . The purpose of this paper which is a sequel of * Boolean planarity characterization of
graphs " 191 i 10 show the following results .

(1) Both of the problems of testing the planarity of graphs and embedding a planar graph into the

plane are equivalent to finding a spanning tree in another graph whose order and size are bounded by a

lincar function of the order and the size of the original graph, respectively.
_ (2) The number of topologically non —equivalent planar embeddings of a Hamiltonian planar graph

G is
1(G)=2¢HI)-1

where ¢ (H ) is the number of the components of the graph H which is related to G.

1. Introduction

A graph G=(V, E) here is always treated as an embedding in the 3 — dimensional
space R * with ve V being points, ee E being Jordan curves such that V e ,¢e,€ E;
e, (e, #a<=> e, () e, € V. Of course, it can always be done for any graph.

Let T, be a depth first search tree on G, =X be the order relation on V in the sense

that the root is the least vertex, and all the tree edges have the direction from the
smaller to the greater. And, all the cotree edges are oriented to be from the greater to
the smaller, For y €T, let C, be the fundamental circuit generated by y with T,, Fur-
ther, let Z(G), or simply write2, be defined as

@ ={(a,B)la,p¢Tyanda() f=@but C, | C,#2}.
For T, on G, let f, bea T,-immersion, i.¢,, a continuous mapping f -
R*= R? such that
(i) Voo ,v,:0,#0,<=> f(v,)#f(v,);
(ii) V eeE,e,eT,. ¢ () e« f(e,)() [ (e,) #;

(i) Ve .e,eE:e, () e,={v}) = fle,)fle,)={f(v)}.
And ,let. 7, be the set of all the T,- immersions of G. Further, forf, e, let
-@o(fn)={(fp(a)'fn(ﬁ))lfn(d)ﬂfo (ﬁ)=®,(a,ﬁ)e.@};

{7/ (fo)z{([n(a),fp(ﬂ))lfn(a)ﬂfp(ﬂ)¢®,(a,ﬂ)6.@}.

1) This research was supported by the U.S. National Science Foundation under Grant Number ECS 85 63212 and
by the National Natural Science Foundation of China as well. The author is greatly indebted to
Professor Peter L. Hammer for many helpful discussions, suggestions and comments.

*)  The permanent address : Institute of Applicd Mathematics , Academia Sinica Beijing 100080, China.
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Of course,? (f ) =2-2,(f,). . .

Then , we introduce two kinds of variables x,,, and ¥, , , Which are respectively
said to be tree variables and cotree variables, for edge pairs (¢, s) and (¢, a) at a
non - univalent vertex v, probably save only for the root,of T, where ¢ is a tree
edge going away from v, s is an edge in E of going away from v, and « is a cotree
edge coming to v, Moreover we have known that for (a, f) e, in C, |JC;, there
are exactly two variables , one is tree variable denoted by x ., ;. , and the other,
cotree variable denoted by y,, y =a ,or faccording as h(a) >~ h (B), or h(@)=<Xh(p).
Here , h (y) is the head end of y, i.e., the smaller end for a cotree edge.

In [9 ], we provided a criterion for testing the planarity of a graph as follows,

Basic Criterion, For a graph G, G is planar iff for a given T, on G, f,ez, ,
the Boolean equation system

x(-.p>y,VY<,.u>Y,=0, (fn(—a)! fD(B))E@o(fD))
I(ID).{

Y(a.ﬂ)._y-y V X (apy yy=0’ (fp(a)y fp (ﬂ)) 5@|(fp)
has a solution .

The purpose of this paper is to do the following four things,

In § 2,we derive several criteria for testing the planarity of a graph for the further
use of transforming the problem into finding a spanning tree in another graph
Hy(G, T,) which is said to be an auxiliary graph of G with class 0,

In §3, we investigate the auxiliary graphs H, (G, Tp) of class 1 so that the order
of H (G, T,) is bounded by a linear function of the order of G.

Then ,in §4, we introduce the auxiliary graphs H,(G, T,) of class 2 so that
both the order and the size of H,(G, T,) are bounded by a linear function of the or-
der and the size of G respectively,

And , finally,in § 5, the planar embeddings of a planar graph are discussed and
the number of topologically non-equivalent planar embeddings of a graph is deter-
mined for the Hamiltonian case,

2 . Auxiliary Graph of Class 0

From the Basic Criterion, we may see that the problem of testing the planarity of
a graph has been transformed into testing if the Boolean equation system I (f,) has a
solution. This is almost a trivial thing because in I (f,) each equation has exactly
two Boolean variables involved,

Now , we construct a graph , denoted by

HO(G’TD) =(V°(G, TD)’ Eo(GoTD))’
for T, on G such that

VO(G’TD)={X(x‘ﬂ)'y1l(a’ﬂ) e@}; (2 )
E (G, Ty = {(x gy YN (@,B) e}, A

where y=a, or § as mentioned above in I (f ), H (G, T,)is said to be the auxiliary
graph of class 0 for T, on G,

2520



66 Liu Yanpei

Further we introduce Hy (G, f,; w) for f, € % , such that
H,=(G,f,;w)=H,(G,T,) (2.2)
provided a weight function w on E (G, T',) is defined as
70, (o, B) ez, (f,):
w ((x (,,,,,y,))={ (2.3)
] 1, (0.p) ez (),
for(x (,,5.5)€E (G, T,).
For H,(G,f,;w), if 3 a kind of labeling the vertices on V,(G, T,) by 1(v)
=“+", or“-", v e V,(G,T,), such that
V (Xp5y59,) € EG(G,Tp):
Ix ) =10y,) <> wllx,;,5))=0;
Hx ap) #1 (y,) <= wllx(, 55 ¥,)) =1, (2.4)
then H (G ,f, ;w) is said to be balanced .
The following results are well known and easily proved,

Lemma 2,1, The following statements are equivalent ;

(1) I(f,) has a solution ;
(2) 3 any fundamental circuit C (H,) in H,(G,f ,;w) with the property :

w(C(Hy)) =) wi(el=1(mod2); (2.9
ee CHg )
(3) The subset of edges U, (H,) in H (G,f ,; w),
U,(Hy)={e|w(e) =1,ee E,(G,T,) } (2.6)

is a cutset on H (G; T,) (notice that cutsets here do not mean minimal)
(4) H,(G,fp,;w) is balanced.
Proof , (1) => (2). See Lemma 3.1in [6].
(2) => (3). See Lemma 3.3 in [6].
(3) = (4). From (3), U,(H,) has the form
U, (Hy)=(X,Y )={(x,p)|xeX, yeY},
where V (G, T,) =X { ] Y, XY= At this moment we may write

1(2) {+,zeX:
3 —ze Y. (2.7)

Therefore , H (G, f,, ; w) is balanced.
(4) = (1). In this case, a solution is found for 7(f,) only by substituting 1
and (0 for the labels “+ " and “— "respectively, or vice versa, 1]
According to the Basic Criterion, we have the following criteria for the planarity,

2521
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Theorem 2.2. G is planar iff one of the following properties holds for a
given T, on G and a T, — immersion f, € 7, :

(1) H,(G,f,;w) does not have a fundamental circuit C (H,) satisfying (2.5);
(2) The subset of edges U, (H,) defined by (2.6) is a cutset of Hy(G;Tp);
(3) H,(G,f,;w) is balanced,

Now we may see that testing the planarity by one of above criteria shown in
Theorem 2.2 in fact corresponds to finding a spanning tree on H,(G ;T,) in view of
the computing complexity. However, the order and the size of H ( G,T,) here are
bounded by a quadratic function of the order and the size of G.

In what follows we investigate what the auxiliary graphs of class 0 as a whole
look like . Let

H,(4,5,) ={H|3 T, onGe¥, Tyes, > H=H,(G;T,)}. (2.8)

In order to characterize H (., 7,), we have to introduce another kind of graphs
each of which is said to be path overlaping graph, denoted by

g(2(T,))=(V((T,)), E(F(T,))); (2.9)
G(# (T ) ={G(AT))IT, e} (2.10)
and defined in the following way for a rooted tree T, € 5, and a set of dipaths

9(T,) on T,,

For T, isrooted , we may write = to be the order relation on the vertex set

of T, inthesense: V u,ve V(F,), v= u<=> 3 a dipath from v to u on

T
For a path (dipath of course ) P, let

v=min P: Vwe V(P), w=v = w=vp

u=maxP; vw € V(P), u Xw = w=u

’
3

where v ,u are said to be the ends of P,
And , for T,, there is a unique minimal vertex which is the root. But, the
maximal vertices generally are not unique, Let M (T ,) be the set of all the

maximal vertices of T, .
Now, we may determine V (27 (T,)) and E(2(T,)) in (2.9). Let

Vow={ul 3 Pe 2(T,), u=max P,u ¢ M (T) }

Vo={ul2 Pex(T), v=minP, v£0}; .

Vie={w|3 P, ,P,eT), P (\P,#x, °
and inf (max P, , max P)=w

min ( min P,, minP, )} .
Then we have
V('y(Td)) =an U Vmin U Vm!’
(u,v)e E(#(T D<= 3 P,,P,e»(T,), P, NP,#2
3 u =max (min P, , min P,), min P, #min P, ;
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and
v =inf (max P, , max P,), max P, #max P,

Theorem 2.3, He H, (¢,7,), iff He G((7,)).
3. Reduction I

The aim of this section is to find the so called auxiliary graphs of class 1 such
that their orders are bounded by a linear function of the order of the original graph.

In order to do this, we have to reduce the number of variables which appear in the
Boolean equation system I (f ,), or find a substitute for T, on G and f , € .7,

Now , we investigate the Boolean equation system I (f 5 ) first, For a tree varia-
ble x ,,, we have,without loss of generality, s =(w,u), t =(w,u) €E (T,)
since otherwise we may use G as defined in the previous paper [9] to be the resultant
graph of subdividing each cotree edge into two on G such that one is incident to the
back end of‘the ca}ree edge for T, and is extended to a tree edge for Tp
of course , T, € .9, =, (G). Let Oy Opytery O be all the cotree edges
incident to the branch B, ( T,) which contains all the vertices = v
on T, with h (aj) < w,1<j<i,forinstance h(a;) Xh(a,) X -+ K ha,)
= w. Likewise, let g,,8,, ---, B, be all the cotree edges incident to the branch
B (T,)with h(B,) X h(B,)=X --- K h(B, )= w. Because T, €5, is allowed
to choose whichever is favourable for our purpose, we here employ the L - immersion
for the Basic Criterion, which was defined in [9 ] assuch a T, - immersion that every
cotree edge is on the left hand side when one moves from the head end to the back end
along T, . Suppose h(ﬂl) is the least vertex among h(a), h(B),1 <j< i, !
<l<i,, and suppose h(B,) < h(a,); otherwise, we may let o, be a,_,,, ,
k=min {i|h(a,) > h(B,)}, j > k, because no equation in I (f,) is with both
Y. and x, for j< k. Then ,in I(f ), all the equations involving x, are as fol-
lows:

X, Ve, VX, p, =0, h(B)=h(a), 1 <j< i,;
3.1

X, ¥p V X9, =0, h(x)=h(B,), 1<j<i,.
Further, we may arrange in a linear order all the cotree variables which appear
in (3.1) in the following way:y ,=a,,and if y, is already determined then y,,, is
the succeeding one appearing in the rotation at the common head end of y, and y .,
whenever any; otherwise y,,, =min { o,Bh(y)=<h(), h (ﬁi) }. Let
@o(fl. %) ={(y,s%4) ly.,s 7. appearin the
same kind of equations of Eq.(3.1)}
@IUL;xn)={( yi775+|)'7i’ 7.+ appear in (3.2)
different kinds of equations of Eq. (3.1) }.
Then , we may find the following lemma,

Lemma 3.1, Eq. (3.1) is equivalent to the following equation system
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{;yi}-yi+l vy’iy71+1=0' ('}’5 ,‘YH.,)E @l ([L;x.u); (3 3)

yH;HH V'—y_"iy"'iﬂ =0, (’)’, et €@, (Lix,).

Proof. Letgq,(x,,y, ) =0 be the equation, in which y, appears of Eq. (3.1
and p, (y” Yy ,-+|)= 0 be the quation , in which Yi;2 Y10y 2PPERI, of Eq. (3.3).
And, let I,(x,,») ={q,(x,,y)=01j=1,2,,k},ie, Eq(3.1), and
J iy () ={Pj (,Vy,- ,yyjﬂ) =0]|j=1,2,--,k-1}, ie., Eq.(3.3).

First, it is easily seen that I, (x |, ; y) is equivalent to J, (y), i.e., I,(x,,y) hasa
solution iff so does J, () since { x,, ;¥ ,, ), } is a solution of I, (x ;) iff {y, ,y, }isa
solution of J, (y).

Then , for the general case, on the basis of I, (x,,; y) being equivalent to
I G5 UL Peei (o, L ¥, ) =0}, further,we may by induction find that
1,(x,,; y) is equivalent to J,, (W U{ Py ey » ¥ ) =0 }=J ., (y). This means
the lemma, 0

If two successive cotree edges y;,7,,, for a tree variable x ,, appear in one of the
configurations: Conf, A , Conf, B, and Conf, C , then y i and P;+1 are said to be ad-
jacent, For y¢ T,, let b(y) be the back end of y,

Conf A, 3 2¢T, 2

() hla)=h(y)=h(y,.);
(ii) inf(b(y,), A)<XA=inf(b(a), b(y,;,,)).
Conf. B, 3 o,p¢T, D
(i) max (h(a), h(B))=< h(y,)=h(y,,);
(ii) inf(b(a), b(y;))=A>=inf (A, ,A,) <A, =inf (b(B), b(y,,)).
Conf, C, 3 a¢T,>
(ii) inf (b (a), A) <A =inf(b(y,), b(y,,)).

Lemma 3.2, Fory, y,,, ¢ T, with a tree variable x , we have(yj, yj+,)
e, (f,; x,)iff y, andy,,, appearin Conf, C;and(y;,y.,) e @, ([ ;x,) if
y, and y,, appear inoneof Conf, A and Conf. B,

Proof . To prove the first statement, The sufficiency is easily obtained in the
usual way by finding the equations. For the necessity , two cases should be discussed
with (y,,y,.,) € @,(f.; x,,) and the assumptions on «,, B, described above .

Case 1.1. y, =a, Yot =% From Eq. (3.1), we have h(f, )—<h(y]_)
= h(y,,) andinf (b(B),A)<A=inf(b(y;), b(y,)) which meansy ,y ., ap-
pear in Conf, C,

Case 1.2 ¥;=84, 7,,, =B;.,. The same as that in Case 1,1 can be used except
only for § instead of .

To prove the last statement, Similarly, the sufficiency is obvious, For the necessi-
ty, we discuss the following two cases,

Case 2.1. V;=uo,, v, =f,. From Eq.(3.1), we have h(f ) <h(z ) X
h(a )X h(B) U h(x,)= h(a;), then h(a,) < & (B,) . That
means ¥;, y,, appear in Conf, A, Otherwise, y; and v ;+1 appear in Conf A
or Conf, B according as h(«;)—=<h(B,) or h(a,)=h(B,).

%:2



70 Liu Yanpei

Case 2.2, y;=§,, ¥,», =«,. The same as that in Case 2. 1 only by
exchanging « and B, 0

This lemma enables us to chech up on the adjacency of two cotree edges without
using the tree variables, Let .o be the set of all the pairs of cotree edges which are adja-
cent, And, let

o= {(a,B) e o |a,f appearin Conf. C };
= {(a,B) e | a, B appearin Conf, A or Conf B }.

Now , we have to mention that because of the uniquness of f, for a given T, on
Gandf,es,,allof o, o, and.=, do not depend on the immersions,

Lemma 3.3, Equation system I (f ,) for T, on G and f, € 5, is equivalent to
the following Boolean equation system

yg ;’ v;,y,=0, (a,ﬁ) Edo;
jv_u;ﬂ v yuy}=0n (u,ﬁ) E.,il .

Proof, Let I (f,)represent the set of all the equations appearingin the BasicCri-
terion ., And let I(f,; x) be the set of all the equations in Eq. (3.1) for the tree va-
riable x € X, the set of all the tree variables . Then, I(f,) =Y , . I(f,;x). On
the other hand , let Y be the set of all the cotree variables, and let J (f ) ; x) be the set
of all the equations appearing in Eq. (3.3) for a given xe X . Then , the set of all
equations in the form (3. 3) for all tree variables is J(f ,) = Y. .. J (fp; X).
From Lemma 3.1 , we have

(3.4)

(3.5)

I1(f,)<=> J(f,).

Further , let K (T ,) be the set of all equations in Eq.(3.5). Then ,from Lemma 3 2,
we have

J(fp)<=> K(T,).

This is the lemma, 1]
Criterion 3.4. G is planar iff for a T, on G, Eq. (3.5) has a solution ,
Proof. From Lemma 3.3, a direct result of the Basic Criterion . 0

This criterion allows us to go back to a graph again ,which is denoted by H,(G,T},)
=(V(H,), E(H,)) and is said to be an auxiliary graph of class 1 of G,
where

V(H)={y|y,e Y }; E(H)=x

And , we may also introduce a weight function w on E(H ) as follows :

0, (a,B) ey ;
W ““'ﬁ’)*{ L, (@B e, (3.6)

Then , in the same way as that of proving Theorem 2.2 , we may obtain the fol-
lowing theorem,
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Theorem 3.5, The following statements are equivalent :

(1) G is planar ;

(2) H,(G; T,) does not have a fundamental circuit C (H,) such that
w(C(H))=Y ,.c w(e)=1(mod 2);

(3) 7, is a cutset of H (G; T, );

(4) H,(G; T,) is balanced,

Theorem 3.6, The order of H,(G ; T, ) is bounded by a linear function of the or-
der of a planar graph G,

Proof, Let nbe the order of G, i.e., n=|V |. And , we have known that the
size of a planar graph is at most 3n— 6, and the order of H, (G ; T ) is less than the
number (3n—6) —n+ 1 of cotree edges in G, Therefore, the order of H,(G ; T,) is
less than 2n— 5, o

4. Reduction I

In the previous paper, we found six obstacles which were denoted by Conf
I—VI [9]. However, we may see that there are in fact seven configurations by
dividing Conf, II into two, After eliminating repetitions between them , the seven con-
figurations are listed as follows,

Conf. 1 3 w,8,andy, 6¢T, 3

max (h(y), h(8)) < h(x)<h(f)<XC<B=4,

where C=inf (b(y), B), B=inf(b(a), 4), and A=inf (b(B), b(5)).
Conf, 2 3 a,B,nandy,6¢T,>

(i) B=inf(4,inf(b(n), b(a)))Rinf(b(y), b(¥))=4;

(i) h{(n) =h(B)=h(8)=h(a)=<min (C, h(y))= max (C,h(y))=<B,

where C=inf (b (B), b(a)).

(iii) B=inf(b(n), b(a)).
Conf.3 3 «,Bf, nandy, 6 ¢ T, 2

(i) h(B) =h(n)=<h(8) = h(e) XD =X h(y)=<C;

(i) D=inf(b(B), C)=X max (h(y), D)<XC<B=A.

where A=inf (b(y), b(8)), B=inf(b(yn), 4), C=inf(b(a), B).
Conf, 4 3 oa,B,yandé, n,(¢Tp,>

(i) max (h(¢&), h(y), B({))=<min (h(a), h(B));

(ii) max (h(a), h{(B))=<inf(b(n), h(y)) =X h(y);

(iii) h(y)=<inf (b (&), b(B), A)=inf(b(y), b(B), b()))=4.
Conf, 5 3 a,B,yandé, n¢T,>

(i) max (h(B), h(n)) <h(y)=<min (h(8), h(a));

(ii)) max (h(8), h(a)) <inf (4, B) <Xinf (b(8), b(n))=4;

(iii)) B=inf (b(y), C)=inf(b(a), b(B)) =C.
Conf. 6 3 «,f,y,6andl¢ T, >

(i) h(d)=h(B)=< h(&) <min (h(a), h(y));

(ii) max (h(a), h(y)) <A=inf (b (&), B)<B=inf(C,D) ;

(iii) B=C =inf (b(8), b(y)), B=<D=inf(b(a), b(B)).
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Conf.7 3 a,B,y and¢,n, (¢ T, 3
(1) max (h(), h(n), h(&))=<h(a) =h(B)=h(y);
(ii) h(y)=< D=inf(A4,B,C);
(iii) D=inf(b(p), b(n)) =4, D=<Xinf( b(a), b(¢)) =B,
D=inf (b({), b(y))=C.
Criterion 4,1 G is planar iff none of the configurations : Conf. 1—7 as shown

above appears in G as a subgraph,
Proof. A direct result of Lemma 4.8 in [9 ] and the Basic Criterion, 0

According to the criterion we may now introduce another kind of auxiliary graphs
for T, on G, which is said to be the auxiliary graphs of class 2,denoted by H,(G ;T}),
in order to reduce the sizes of those of class 1,

The vertex set of H,(G ; T)p) is the same as that of H,(G; T,). And , the edge
set E(H,) of H,(G; T ) has tobe partitioned into seven parts corresponding to
Conf. 1—7 and represented by E " (H,), i=1,--- 7. Thus, we have

Hy(GiT,) =) HP(G3T,); HY(G;T,)=(V(H,), EV(H,)). (4.1

i=1

In what follows, we determine E' ( H,), therefore H" (G ; T,) for i=1,2,
-+, 7. For the sak of brevity , we employ <a,f>, o, B¢T, , instead of
inf (b(a),b(B)).
Proc.1. Tofind E" (H,).
1. Forag¢ T,,if 3B¢T,2 BeP(a):
P(a)={y¢ T, h(x)<h(y)= <{a,y> <b(} (4.2)

then choosea new o ¢ T, and go back to 1; otherwise choose f ¢ T,
h(B) =min { h(y) |y € P(a)}.

2. W3 7¢T,3 h(B) <<y, a,B> < <a,B>and h(y) < h (a), then
let (a, B) e EW (H,) with weight 0,

3. If 3 6¢T,> h(s)<h(a), and {a, BD—<b(5), then choose a new «
¢ T, and go back to 1; otherwise, let («, f) € E‘" (H,) with weight 1.
Then choose a new « ¢ T, and go back to 1.

4. Until all the cotree edges have been chosen .

Lemma 4.2, If G has a subgraph isomorphic to Conf. 1, then JortheT, onG,
H{"(G; T,) has a circuit C such that w (C) = 1 (mod 2).

Proof. 1If G has a subgraph isomorphic to Conf, 1, then there is a cotree edge cor-
responding to o in the subgraph. Hence, for the edge as ¢ , Proc, 1 provides a cir-
cuit C of length 2 with one edge of weight 0 and the other of weight 1. A circuit
C such that w (C)= 1 (mod 2) is found . 0

Proc . 2, Tofind E® (H,).

I.For n¢ T, ,if — a¢T,: IBe¢T,d h(P=h(n)=<h(x)=<{p.x >=

(a,n ), then choose a new 7 ¢ T, and go back to 1; otherwise , choose f¢ Ty
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{Bopy=max{{y,n>]3 a¢Tp,d h(p)=h(n) < h(x)=<X<{y,ad=<
Ca,n D) (4.3)
2. Let P(B) ={(¢ T, h(B)=<h(D=B>=< (&)} If
—aeP(B): 3 6,y¢T,3 h(&)=< h(a)=<h(y)

=<, n >=C((8,y>, «>=<<3,7 ),

then choose a new 5 ¢ T, and go back to 1.
3. Let (a,6) e E®(H,) with weight 0, (6, y) € E® (H ,) with weight 0, and
ta,y) € E@(H,) with weight 1, Choose a new n ¢ T, and go back to 1,

(4.4)

4. Until all the cotree edges have been chosen,

Lemma 4.3. If G has a subgraph isomorphic to Conf. 2, then forthe T, on G,
H®(G ; T,) has a circuit C such that w (C)= 1 (mod 2).

Proof, Because if G has a subgraph which isomorphic to Conf, 2, then 3 g
¢ T, as indicated in Proc , 2, Therefore, a circuit C of length 3 with one edge of
wieght 1, i.e., w (C)= 1 (mod 2) occursin H?(G; T,). 0

Proc.3. Tofind E® (H,).

1. For n¢ T, , if

—a¢Ty: 3 B¢T,d h(B)=h(n)h(@)=<<{B,a>=<<a,n), (4.5
then choose a new 5 ¢ T, and go back to 1; otherwise, choose f¢ T, :
(Bymy=max{(y,n Dy ¢Ty:3 a¢Tp,3h () =h(n)<h ()=, ad><<a, 7).
2. Let P(B)={y¢ Tl h ()< h(»=<y, B ><X {yp,n>}. If —aeP(P):
36,7¢T, 3 h(B)=h(n)=h(®)=xX h(x) <[, n>=X h(y) <<, n>
=<<{n,¢{8, y>>=<d,y), thenchooseanewn¢ T, andgobackto1.
3. Let (4,9), (6,2) e E®(H,) with weight 0, (a, y) € EP(H,) with
weight 1. Choose a new n ¢ T, and go back to 1.

4. Until all the cotree edges have been chosen,

Lemma 4 4. If G has a subgraph isomorphic to Conf 3, then for the T ,on G,
H® (G ; T,) has a circuit C such that w (C)= 1 (mod 2).

Proof ., Similar to the proof of Lemma 4,3, if G has a subgraph which is
isomorphic to Conf, 3, then H"™ (G ; T,) hasa circuit C of length 3, in which on-
ly one edge has weight 1, 0

Proc.4. Tofind E¥(H,).

1. For {¢ T»o ,if

-3¢ Ty: max (h(0), h(n)) =, >= h ()<Y, D, (4.6)

then choose a new { ¢ T, and go back to 1,

. Let P({)={y,n¢ T,|yand z satisfy (4.6) } .
Il —o,p,6¢ Ty:max (h(&), h(n), h({))=<min (h(a), h(B))
= max (h(a), h(B)) = {n,¢{ )= h(y)=< min {a,lD, <&,LD)

(9]



