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Surface Embeddability of Graphs via Tree-travels

Yanpei Liu
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E-mail: ypliv@kjtu.edu.cn

Abstract: This paper provides a characterization for surface embeddability of a graph
with any given orientable and nonorientable genus not zero via a method discovered by the

author thirty years ago.
Key Words: Surface, graph,Smarandache A°-drawing, embeddability, tree-travel.
AMS(2010): 05C15, 05C25

§1. Introduction

A drawing of a graph & on a surface S is such a drawing with no edee crosses itzelf, no adjacent
edges cross each other, no two edges intersect more than once, and no thrse edges have a
common poinl. A Smarandache AS-drawing of G on § is a drawing of G on & with minimal
intersections AS. Particularly, a Smarandache O-drawing of G on S, if existing, is called an
embedding of G on 8. Along the Kurolowski research line for delermining the embeddability
of a graph on a surface of genus not zero, the number of forbidden minors is greater than a
hundred even for the projective plane, a nonorientable surface of genus 1 in [1].

However, this paper extends the results in [3] which is on the basis of the method establishad
in [3-4] by the author himself for dealing with the problem cn the maximum genus of a graph
in 1979. Although the principle idea looks like from the joint trees, a main difference of a tree
used here is not corresponding te an embedding of the sraph considered.

Given a graph ¢ = (V. E), let 1' be a spanning tree of (7. If each cotree edge is added
to T as an articulate edee, whal obtained is called a protracted tree of 7, denoted by 7. An
protracted tree 1" is oriented via an orientation of T' or its fundamental circuits. In order to
cuaranlee the well-delinedness ol the orienlation [or given rotabion al all vertices on & and
a selected vertex of T, the direction of a cotree edge is always chosen in coincidence with its
direction firstly appeared along the the face boundary of 1. For convenience, vertices on the
boundary are marked by the ordinary natural numbers as the root vertex, the starting vertex,
by 0. Of course, the boundary is a travel on G, called a tree-travel.

In Fig.l, (a) A spanning tree T' of Ks(i.e., the complete graph of order 5), as shown hy
bold lines; (b) the protracted tree Tof T.

Hieceived December 25, 2010, Accepted Pebruary 22, 2001,
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§82. Tree-Travels

Let (! = ({V:e) be the tree travel obtained from the boundary of T with 0 as the starting
vertex. Apparently, the travel as a edge sequence C' — ((e) provides a double covering of

G = (V, E), denoted by

C(Vie) = 0Dy 5, vs, By s vig Doy iy v, Tsy v Ly 260 (1)

1%

where € = |£].

For a vertex-edge sequence @ as a tree-travel, denote by [Q]ee the edge sequence induced
from Q missing vertices, then Ceg — [C(V;€)leg is o polyhegon(i.e., a polyhedron with only one
face).

Example 1 From T in Fig.1(b), obtain the thee-travel
C(Vie) = 1Py s0P5140P1g 150 Pis 200
where 15 = 15 = 74 = 15 = 295 = () and
Pz = ala2a113838 Y vdy Ha
P5,14 = b2636_12/\-1/\_12b_1;
Pisas = cBoda 18,
Pig g = ddd ™2,

For natural number 4, il av;a~! is a segment in €, then a is called a reflective edge and

then v, the reflective vertec of a.

0042
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Because of nothing important for articulate vertices(1-valent vertices) and 2-valent vertices
in an embedding, we are allowed Lo restrict ourselves only discussing graphs with neither 1-
valent nor 2-valent vertices without loss of generality. From vertices of all greater than or equal
to 3, we are allowed only to consider all reflective edges as on the cotree.

1f 23, and v;, are both reflective vertices in (1), their reflective edges are adjacent in G and
i1 voa oz N [P
then the transformation from ' to

Dy, ., CVi€) = 08 iy v Py gy v, Py i vy Py sz vig P 00 2)

vy =, and vy =y, [P,

‘i~"~}°g =@, but neither vy nor vy, is a reflective vertex,

is called an operation of interchange segments for {vs,vi,}.

Example 2 In C = C(V;e)) of Example 1, no = 2 and 2y = 3 are two reflective vertices, their
reflective edges a and 3, vy = 2 and 115 = 3. For interchange scgments once on C', we have

Dg3C = 0P 52P;5 153P; 2P 43P)5 200 (= C1).
where

Pz = ala (= Pp2);

Py 15 = 6367120071267 1063 (= Pros);
o = B 174y a7 1062 (= Pus3);

Prg=a 18 (= Prasas);

Pis00 — 0do 3¢ '0d4d ! (— Pras.20).

Lemma 1 Polyhegon A, i3 Coy, is orientable if, and only if, (%, is orientable and the genus

of M. v, Cog s exactly 1 greater than that of Cl.

Preof Because of the invariant of orientability for A-operation on a polyhegon, the first
statement is true.
In order tc prove the second statement, assume cotree edges a and J are reflective edges

at vertices, respectivelyw;, and vy, . Because of

Cog = Ava™'BBA"1CDE

where
Ax = i_P(,‘z‘,]rgi f)_lBﬂ - lPE'JJ'.'JCE:
B7C = [Pygleg: P=[Pygle
E= [Pi;.i,]egt

we have

Dy, w,,Cog = ArDB*Ca™'BSE
~otop ABCDEafa™ 7, (Theorem 3.3.3 in [5])
= Ceparffa~ 13! (Transform 1, in §3.1 of [5]).
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Therelore, the second stalement is Lrue. |
If interchange segments can be done on ' successively for & times, then (7 i& called a k-free
travel. Since one reflective edge is reduced for each interchange of segments on (' and €' has at
most m = |3/2] reflective edges, we have 0 < k < m where 3 = 3(() is the Betti number(or
corank) of G. When & =m, ' is also called normal.
For a k-tree travel Cx(V;e,e™ 1) of G, graph Gy is defined as

K
Gi = TU[E}ef r] Er — E{E;n e}l 3)

=1
where T is a spanning tree, [ X| represents the edge induced subgraph by edge subset X, and
e € Fyof, € € B, {ej.€}} are, respectively, reflective edge, cotree adge, pair of reflective edges
for interchange segments.
Example 3 On ) in Example 2, v1.3 = 3 and v1.5 = 4 are two reflective vertices, v1.s = 3
and 29.10 = 4. By doing interchange segments on (', obtain
N3.4C1 = 0PLo103Prar,194P12,153 Pracazd Prag sl (= C2)

where

Pl;o‘l(_. = ala2b'10c33'1174-7_11(1_101326(: Proac);

Prarie = ¢ '0d(= Paaoa)

Prizar = o 2071830407 (= Puai7);

Pryo12 = 6 '2AM(= Pyi7,10):

Pragn =d (= Forg ).

Because of [Pag 16les M [Pe21oles # 0 for vogs = 4 and wagqg = 4, only veg = 4 and
va.16 — 4 with their reflective adges v and @ are allowed for doing interchange segments on Ch.
The protracted tree Tin Fig.1(b) provides a 2-tree travel (', and then a 1-tree travel as well.

However, if interchange segments are done for pairs of cotree edges as {3,+}, {4, A} and
{a, 0} in this order, it is known that C is also a 3-tree travel.

On (7 of Tixample 1, the reflective vertices of cotree edges /3 and 7 are, respectively, 1y — 3

and 25 = 4, choose 4’ = 15 and 6’ = 19, we have
2a6C = 0P84 Prg a3 Pz o Proaea 0= Ch)
where

Proa= Pya: Pras = Pisye; Pisar = Psas;

FPrarae = Pyg: Pl;m.zu = P]!J,‘_’(h

On (7}, subindices of the reflective vertices for reflective edges d and A are 5 and 8, choose

5 =17 and 8’ = 19, find

LinsCr = 0Ps053Pon 74 Pem 163 016,104 Pospo 20 0(= Ca)
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where

Poo 13 = Proz; Ieio0a = Prarae; Pojiaar = Pruaar

Pa710 = Pri12.145 Po10,20 = Priezo.

On (3, subindices of the reflective vertices for reflective edges a and o are 2 and 5, choose
2" =18 and 5 =19, find

Lig 8 Cy = 0P3,0.23Ps,2 34 33163 Ps;16,104 P3;10 200(= C3)
where

Proo = Poopi Paos = Paisie; 5316 = Poss;

Pii5.18 = Paogs P00 = Pajie 0.

Because of 3(K;) = 6, m =3 = | 3/2|. Thus, the tree-travel C is normal.

Thizs example tells us the problem of determining the maximum orientable genus of a graph
can be transformed into that of determining a k-tree travel of a graph with k& maximum as shown
in [4].

Lemma 2 Among all k-tree travel of a graph (7, the maximum of k is the maximum orientable

genus ymax () of G.

Proof Tn order to prove this lemma, the following two facts have to be known(both of

them can be done via the finite recursion principle in §1.3 of [3]!).

Iact 1 In a connected graph (' considered, there exists a spanning tree such that any
pair of colree edges whose fundamental circuits with vertex in common are adjacent in (.

Fact 2 [or a spanning tree 7' with Fact 1, there exists an orientation such Lhal on the
protracted tree T, no two articulate subvertices(articulate vertices of 1') with odd out-degree
of cotree have a path in the cotree.

Because of that if two cotree edges for a tree are with their fundamental circuits without
vertex in common then they for any other tree are with their fundamental circuits without
vertex in common as well, Fact 1 enables us to find a spanning tree with number of pairs of
adjacent cotrec edges as much as possible and Fact 2 enables us to find an orientation such
that the number of limes [or dong interchange segmenls successively as much as possible, From

Lemma 1, the lemma can be done. ]

§3. Tree-Travel Theorems

The purpose of what follows is for characterizing the embeddability of a graph on a surface of
genus not necessary to be zero via k-tree travels.

Theorem 1 A graph G can be embedded into an orientable surface of gervus k if, and only i,
there exists a k-tree travel Cp(V;e) suck that Gy is planar.
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Proof Necessity. Let p(G) be an embedding of G on an orientable surface of genus k.
From Lemma 2, u(G) has a spanning tree 7' with its edge subsels Ey, Fo| = 3(G) — 2k, such
that & = G — Ey is with exactly one face. By successively doing the inverse of interchange
segments for k limes, a k-tree travel is oblained on G. Let K be consisted of the & pairg of
cotree edge subsets, Thus, from Operation 2 in §3.3 of [5], Gx =G —K = G=R4 Eq is planar.

Sufficiency. Because of G with a k-tree travel Ci(V': ), Let K be consisted of the k pairs of
cotree edge subsets in successively doing interchange segments for & times. Since Gx =G K
is planar, By successively doing the inverse of interchange segments for k times on Ci(V; e} in
its planar embedding, an embedding of G on an orientable surface of genus £ iz obtained. [

Example 4 In Example 1, for G = K3, C' is a 1-tree travel for the pair of cotree edges o and
3. And, G1 = K5 — {o, 8} is planar. Tts planar embedding is

4o 8¢ 0dd)ey = (07 e 1d);

Ad 0aly4]e = (d ay):

804X 712680, = (0AT18); [0e807 1267100 = (0 1H7Y);
20y e 0b2) o, = Ay ta 7).

By recovering {a, 3} to G and then doing interchange segments once on (', ahtain . From
"y on the basis of a planar embedding of G, an embedding of G on an orientable surface of
genus 1{the torus) is produced as

e 8¢ 0d4]e,, — (071 1d); [Ad™10al4]ee = (™ ay);
:304/\_1253;{3’_1la"llJb:la-‘ll,B&“,K = (eA 1637 ta 207 13);
(0367126 0leg = (0107 1); [2M47 M 1a2]eg = (Ay ).

Similarly, we [urther discuss on nonorientable case. Let G = (V. E), T' a spanning tree,
and
C(V;€) — Ol gui L s Pyn0 1)

is the travel obtained from 0 along the boundary of protracted tree 7. Tf v; is a reflective vertex
and v; = v;, then

A¢C(Vie) = 0P 30 P Pioc0 (5)
is called what is obtained by daing a reverse segment for the reflective vertex »; on (V).

If reverse segment can be done for successively k times on C, then C is called a k-tree
travel. Because of one reflective edge reduced for cach reverse segment and at most 3 reflective
edu'es on (7, we have 0 < & < 8 where 3 = 3(G) is the Betti number of G(or corank). When
k=3, Clor G) is (‘a]led twist normal.

Lemma 3 A connecled graph is twist normal if, and only if, the graph is not a tree.

Proof Because of trees no cotree edege themselves, the reverse segment can not be done,
this leads Lo the necessily. Conversely, because ol a graph nol a tree, the graph has Lo be with

a circuit, a tree-travel has at least one reflective edge. Because of no effect to other reflective
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edges after doing reverse segment once for a reflective edge, reverse segment can always be
done [or successively 4 = 3(G) times, and hence Lhis Lree-travel is (wist normal. Therefore,
sufficiency holds. |

Lemma 4 Let C be obtained by doing reverse segment at least once on a tree-travel of a
graph. Then the polyhegon [£:;C]eg is nonorientable and its genus

S . 2¢(C)+1, when C orientable;
9([2¢Cleg) = < . i
g(C)+1, when C nonorientable. (6)

Proof Although a tree-travel is orientable with genus 0 itself, after the first time of deing
the reverse segment on what are obtained the nonorientability is always kept unchanged. This
leads te the first conclusicn. Assume C,, is orientable with genus g(C)(in fact, enly g(C) =0
will be used!). Because of

[2iCee = AEB~YC
where |Pyiley = AL, |Pjlee =& 1B and P, o, — C, From (3.1.2) in [5]
|8:Cllg ~10p ABCEE.
Noticing that from Opcration 0 in £3.8 of [5, Cryey ~1op ABC, Lemma 3.1.1 in |5 lcads to
5((AeC)eg) = 29( Cleg) + 1= 2(C) + 1.
Assume C\, is nenorientable with genus g(C*). Because of
Clog = ALET1BC ryop ABC,

G{[AeCleg) — G(C) + 1. Thus, this implies the second conclusion. [

Az a matter of fact, only reverse segment is enough on a tree-travel for determining the
noncrientable maximum genus of a graph.

Lemma 5 Any connected graph, except only for trees, has its Betti number as the nonori-
entable maximum genus.
Froof lFrom Lemmas 3-4, the conclusion can soon be done. O
For a k-tree travel Cy(Vie) on G, the graph G is defined as
k
Gy =1l = Y {e}] (7)
=1
where T' is a spanning tree, [X| the induced graph of edge subset X, and e £ Eypr and {e;, €},

respectively, a reflective edge and that used for reverse segment.

Theorem 2 A graph G can be embedded into a ronorientable surface of gerus k if, and
only if, G has a k-tree travel C';,-c(lf';e‘) such that Gy 2s planar.
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Proof From Lemma 3, for k, 1 < k < B(G), any connected graph G but tree has a J-tree
travel.

Necsssity. Because of (¢ embeddable on a nonorientabls surface S of genus k, let 7i(G)
be an embedding of G on Sz Irom Lemma 5, fi(G) has & spanning tree T with cotree edge
set Fo, Kol = A(G) — k, such that ¢ = (7 — Ey has exactly one face. By doing the inverse of
reverse segment for k times, a k-tree travel of G is obtained. Let K be a set consisted of the k
cotree edges. From Operation 2 in §3.3 of [3], Gy =G - K = &~ K | Ey is planar.

Sufficiency. Because of (¢ with a k-tree travel (5 (V;e), lel K he the set of & cotree edges
used for successively dong reverse segment. Since iy = ¢ — K is planar, by successively doing
reverse segment for k times on C;(V;e) in a planar embedding of G, an embedding of G on a
nonorientable surface Sy of genus k is then extracted. O

Example 5 On K3 3, take a spanning tree 7', az shown in Fig.2(a) by bold lines. In (b), given
a protracted tree T of T. From 7', get a tree-travel
O =0Py,112P11,152P15,00 (= Cp)
where 15 = 213 and
Poa1 = 4850 M~y3y e 10d2e3813 3¢ L
Praa5 = d *0albse;
Piso = e
Because of vy5; = 2 as the reflective vertex of cotree edge « and vy = 245,
D5Cy = 0Py0,1128511,152 115,00 (= C1)
where
Progn = FPoq1 = 4856714 y8y e 10d2e33167 1871
Praas = Pl = o7 '5b M a=10d;
Praso = Piso = t5b11a" 1.
Since G = K35 — o is planar, from Cy we have its planar embedding
fi = [5Pi6.00Ps 20z = (¢ 'a " ed):
f2 = 13Ps53leg = (v 1c de);
fo = [LP15.145Po 43P g1]eg = (6 Lryi3h);
Ji— 1P aalle, = (37 ¢ d ).

By deing reverse segment on (', get (';. On this basis, an embedding of A3 5 on the projective

plane{i.e., nonorientable surface & of genus 1) iz obtained as
fr = 5P 0Pl ep = f1 = (bl 1)
fo=13PrasBleg = f2 = (v e Hde);
fa=11 Pro12Priislleg = be e a0
.?4 = [0P1.14.152P1115,165 P1:2.43 P15 01 Pri5,140 o
= (do 16 1yB8a1).
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(a) T B¥F)
Fig.2

t4. Research Notes

A. For the embeddability of a graph on the torus, double torus etc or in general orientable
surfaces of genus small, more efficient characterizations are still necessary to be further con-
templated on the basis of Theorem 1.

B. For the embeddability of a graph on the projective plane(l-crosscap), Klein bottle(2-
crosscap), A-crosscap efe or in general nonorientable surfaces of genus small, more efficient
characterizations are also necessary to be further contemplated on the basiz of Theoram 2.

C. Tree-travels can be extended to deal with all problems related to embedings of a graph on

surfaces as joint trees in a constructive way.
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Abstract In this paper, we study the flexibility of embeddings of circular
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1 Introduction

A surface is a compact 2-dimensional manifold without boundary. It can be rep-
resented by a polygon of even edges in the plane. Furthermore, it can be also
written by words, for example, the plane is written as Op = aa™, the projective
plane N; = aa. See [8,13] for more detail. In this way, some topological trans-
formations and operations on surfaces can be represented by words easily. For
example, the following relations can be deduced, as shown in, e.g.,[8].

Relation 1: (AzByCz~ Dy~ ) ~ ((ADCB){zyz"y ™)),

Relation 2: (Az Bz) ~ ((AB™ )){(zz)),

Relation 3: (Azzyzy™ 27 ) ~ ((A)(zx)(yy)(=2)).

In which A, B,C, and D are all linear orders of letters and permitted to be empty.
Parentheses are always omitted when the letters in parentheses represent surfaces.
~ means topological equivalence on surfaces.

An embedding of a graph G on a surface S is a homeomorphism h : G — S of
( into & such that every component of & — h((z) is a 2-cell. T'wo embeddings
h:G — Sand g: G —+ S of G on a surface § are said to be equivalent if there s
an homeomorphism f : S — S such that fch = g. The connected components
of § — h((7) are called faces of the embedding. A weak embedding of a graph
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