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k-VALENT MAPS ON THE SURFACES"

Lrv Yanerr (3| E /)
(Institute of Applied Mathematics, Academia Sinica)

Abstract

In this paper, the works of Kotzigt!, Zaks™! and the author(®] have been generalized and unified.
A number of new results have also been obtained.

I. Introduction

A map M means an embedding of a graph G'= (V, E) on the surface §. G is said
t0 be the underlying graph of M. For convenienoce, we consider @ to be simple (with
no loops or multi-edges) and 2-oconnected. And all the valencies of vertices and
faces are at least 3.

Let », ¢ and @ denote the number of vertices, edges and faces of M respeotively,
and let »;, ¢ denote the number of vertioes and faces of valenocies 4, =8, respectively.

A map M is said to be a k-valent map, or A—map for short, if all the valenoies of
vertioes are k, k>3, In this paper, a number of properties related to the valenoies
of vertices and faces for #-maps on the surfaces are considered. Part of the results
obtained here are, in fact, a kind of generalization and unification of [1], [8] and

[21.
II. The First Inequality

For a k-map M, the following relations are known:

by =26=21joy; 2.1
¢=§¢n (2.2)
v-=§l‘v,=v.. (2.3)
Lemma 2.1. For any k-map M on the surface S, we always have
2 (2= (k=2)j)p,=285(8), 2.9

where §=S,, p=0, or Ng, ¢=>0, with No=8,, whioch are the orientable, non-
orientable surfaces of genus p, g respeotively, and
2—2p, if §=48, 0;
5(8) _‘{ P 9 D=0;
2—q, if§=N, ¢>0,
Proof. From (2.1), (2.2) and the Euler formula,
’%(27‘— (k—2)j)p;=2 EJW —k E]¢J+2k§¢l-2k("—3+¢) =2k3(S).
A face whose valenoy is ¢ is said 10 be a —gon. Let m{ be the number of vertices
* Received January 4, 1983.

(2.5)
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each of whioh is incident to ¢ ~gons, ¢, ¢=>8, Let A* be the number of pairs (v, T),
whers » is a vertex incident to a ¢—gon 7. Then

k
gy == 3 i, 2.6)
=1
In addition,
k
v—%m{, for any {>38, 2.7
=
Thus, for any I, 3<I<%,
k=1
ip<ly +§j’mf+,; (2.8)

the equality holds iff mh=mj=---=mj_,=0,
Theorem 2.1. For any k—map M on the surface S, and any >3, t+k—2_kz—,
3<I<k, we have
& 2(k—1)18(8) , < ((k—2)t—20)j—2(k—D)¢ g
2] 5 >—__—%_2k k=21 +§§ 25— (k—2)¢ ?s. 2-9)
Proof. From (2.8), (2.1) and (2.4),
L= i 1 :
Eml+.>m—lv-(1—7)m—7§8m
e

2k (S) 2%—(k—2)j \_1
'( )‘(2k (Ic( 2)7 ;§2k—(lc 2t ¥ k%’«j""
_2(k—D)t3(8) _ < 2(k—Dt—((k—2)t—20)j
==t 2 2k— (k—2)¢ s

For convenience, (2.9) ig called the first inequality. The right hand side of the
inequality is denoted by

D=D(S; s, @s, =), (2.10)

Ill. Deductions from the First Inequality

First, we investigate the upper bound of k.

Corollary 8.1. For any k-map M on tho surface S with 8(8)>0, it is only
possible that k<5, That is to say, on the sphere or the projective plane, there are at
most five maps, or the connectivity of the underlying graph of any k4-map on the
sphere or the projective plane is at most b.

Proof. Even if all the faces were triangles, the first term of (2.4) would be
2k — (k—2)3<0, if £>86,

Similarly, we have the following

Corollary 8.2. For a k-map M on the torus or the Klein bottle, we have k<6,
If k=6, all the faces are triangles.

Conjecture 3.1. For any surface S, §(S) <0, there exists a k-map, £=>3.

When £ is fixed, the bound of the minimum valency of faces may be determined.

Corollary 8.3. On the sphere or the projective plane, in any 8-map, therc
exists either a triangle, or a quadrangle, or a pentagon; in any 4- or b-map, there

an»
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exists a triangle. On the torus or the Klein bottle, in any 3-map, there exists either a
triangle, or a quadrangle, or a pentagon, or a hexagon; in any 4-map, there exists
either a triangle or a quadrangle; in any B~ or 6-map, there exists a triangle.

Corollary 8.4. On the surface S with §(8) <0, in any k-map, there exists a
polygon (i.e. a face) with valency not greater than |2k(8(8)—1)/(2—%)], where
2| denotes the greatest integer not greater than @ and [«] the least integer not less
than 2.

In the following we shall discuss the bound of m{, {>3, 3<i<k,

Lemma 8.1. For k=35, {=38, I=3 or 4, all the coefficients of @;, j=>[2(k—1)?/

((k—2)t—20)7, in (2.9) are nonnegative.
Proof. Sinoe j>[2(k—1)/((k—2)¢—2)7, the numerators of 22 are nonnega-
2%k 4

5 50 are the denominators.

tive; and <

Let
Ne=20—D/((b—2)i—20) | +1 if (k—2)i—21+40,

Corollary 8.5. If M iga B-map on the surface § with 3(S)>0, or if in ocase
8(8) =0 there exists jo=>N such that @, >0 and @;=0, 3<j<N, then for =3 or 4,
there exists a vertex inocident to at least {41 triangles.

Proof. Using Lemma 3.1 and Theorem 2.1 for k=5, {=3, we have

2(k—1)13(85) o
ST = =T 1#3(9)>0,
2—1 $My 45 - _ s _

i.e. there exists mi,,>>0, for some s, 1<s<<k—I.
Remark 8.1. This oorollary contains Theorem 8 of [1], Corollary 1 of [8] and

Corollary 2.1 of [2] as special cases.

IV. The Second Inequality and Its Applications

From (2.9), (2.7) and (2.10), we have
mp> — (k—1—1)v+2(8; @3, s, ). (#.1)
Theorem 4.1. For any k~map M on the surface S, and any ¢=>>8, ¢+ Iff2 , Wo

have

m>W =T(S; ps, @s, =), (4.2
where 2t3(8) ((k—2)t—2(k—1))j—2¢
M == TR = (k=) 28 (-5
Proof. From (2.1) and (2.4), we may obta.in
245(8)
== (k—2)7 +22§ py (k 57 ? 4.4
Then, by substituting (4.4) for v in (4.1), inequality (4.2) may be derived.
Lemmn 4.1. If k=3, t=b, or k=5, {=8, then in (4.3),
_3£>0 (4.5)

Op;
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for all j=No= |2t/ ((k—2)t—2(k—1)) | +1.
Proof. 8inoe t< k2b the denominators of %—, j=N,, are positive, so are the
numerators, for j=>N,,
Lemma 4.2. For k=38, t=b, or k=0, =3, we have
v /¥ _ ov oy v S oy [/ ov
>/ Z = e 4.6
o0/ o0 29;/ o % e Th 4.0

for j=n=>N,,
Proof By (4. 3) and (4.4),
__ /__ (2 _Q"__)
a?’! 34),.

= T((n—t) (((k—2)1—2(k—1))j—2t) — (j—1) (((k—2)t—2(k—1))n—21))

=%(2k~ k—2)8)t(j—n)=0, if A=0,

However, A= (n—1%) (((#—2)t—2(k—1))n—2t) = (Wo—t)(((k—2)t—2(k—1) ) No—21)
>0, Similarly for the other part.

Inequality (4.2) is called the second inequality. Using it, we may determine a
lower bound of mf.

Corollary 4.1. For any k-map M on the surface S, §(8)=0, k=3, t=5, or
k=05, t=3, if there exists an integer n>>N, such that p;=0, 8<j<n—1, j#t, p,#0,
then

niss ((k—2)t—2(k—1))n— 2t
2(n—t) (4.7

the inequality is striot when &(8) #0,
Proof. From (4.2), (4.5) and Lemma 4.2,

O (0T o v /oW
> (G /o) OB (5 5 ?)
3!?' av o ov v
oo (&) 2) 2+ 2/ 2))
_or ( / v )
a¢n a?u
_((k—=2)t—2(k—1))n— 2,
2(n—1t)
Remark 4.1. Corollary 4.1 oontains Corollaries 3.0 and 3. 1 in [3] and
Corollary 2.2 in [2] as speoial oases.
Similarly to Lemmas 4.1, 4.2, for any j>n>N, we may obtain
o> /oD i o D /oD _v /ow
o o e B e .5
Corollary 4.2. For any £—~map M on the surface S, §(8)=>0, k=56, =38, I=8
or 4, if there exists an integer n=>N suoh that ¢,=0, 8<j<n—1, j+i¢, and m{,,=0,
1<s<tk—1, except for s=r¢, @,#0, then
,>% (=2t=Mn—2Gk-Dz .9

n—i

=

Proof. By (2.9) and (4.8)
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1 20 345 / 8!15
mr{-’} T @rp. 95 T,’; a(S) ’>u 3;0,/0(]) ?’

a"/ (o
— 3(p. (aa o0, E(S)“LE a0 &p,)%
_ 1 ((k—2)t—-2Dn—2(k-10)¢
&p,./a:p,. T n—t b
Remark 4.2. Oorollary 4.2 contains CQorollaries 4.0 and 4.1 in [8] and
Corollary 2.2 for §=8,, N, Njin [2] as speocial cases.

V. An Identity

For any k-map M on the surface S, let &,; bo the number of edges incident to
two faces one of whioh has valenoy ¢, and the other, j. Then
Ps= 84t 2] 80y (6.1)
From (2.4) we have

2% 5(S) 2%k — (k—2)
PR —k—2): ;§2k Eh 2)':( ‘-’""2.,98"’) ®.2)

provided 2k— (k—2)t+0,
For convenienoe, let

2— (k=2 o0 sas
U= @—2) I*UI*E
Ah! 2k . (5.3)
B—g—2 1%
Thus
pi= A0 B(S) 2 T Atk 0y, = 20 0,5 3 (Let - Ted) o = Ao,
i% jar Rt J
(5.4)
Substituting (5.1) for ¢; in (5.4), we obtain
2ot 31 ea= Ao, 6.5)
[
Theorem b.1. For any Z-map M on the surface S, >3, t+ k2k , satisfying
@;=0, j<t, and $>0, we have
2% Sk
(BE-G-2) it B (24 22— 6=2) ) et
k o Kk K
~E3(®)+ 3, (k—z——j_) e,,,+m+2.+1(l» 2= j>s,,,
kR
+.1>:2+1 o251 (k—z—T_T) Bhvse (5.6)

Proof. By multiplying the two sides of (5.5) by 2k— (k—2)¢, identity (5.8)
may be obtained.

Lemma 5.1. If k=3, t=b, =2, or k=4, t=38, 8=2, or k=5, t=3, =0, then
all the ooefficients of s;,5, 4, j=#, in (5.6) are nonnegative.

a»
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Proof. Suffice it to show that in (5.6)
(Ok/5) — (h—2)>0;

k., _k
s~ #-2>0;

k k
L S
2k
E—2-— e R 0.
It is just guaranteed by the oonditions.

Corollary 6.1. For any k—map on the surface §, 8(8)=-0, if the conditions of

Lemma 5.1 hold, then there exists an edge e such that when §(S) >0,
o(e)<<2i+s, (5.8)

Furthermore, let o(¢) denote the sum of the valenoies of the two faces incident

10 e If k=4, t=38, s=2, 8(8) =0, and o (¢) >9 for all the edges ¢, then for each e
o(e) =9
and e is inoident to a triangle and a hexagon.

Proof. The first part may be proved as usual. As for the second part, the only
thing we should pay attention to is that in this oase, all the coefficients of s, 4, j=>t,
are positive except those of &;,¢4s+1.

Remark §.1. Corollary 5.1 is a more general form of Theorem 8 in [1],
Qorollary 5.1 in [8] and Corollaries 4.1, 4.2, 5.3 in [2],

Note. All the results obtained have their dual (planar or surface) forms.

(6.7

The author would like to thank Mr. Cai Maocheng for his carefully reading and
correcting errata.
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ON THE LINEARITY OF TESTING
PLANARITY OF GRAPHS

Lrv Yawerr () % 0"

Abstraet

In 1978, the suthor published a paper in which a characteristic theorem of planarity
of & graph was provided as determining if another graph has a fundamental ecircunit with
a certain property. However, the new graph is with, at worst, quadratic order of the

vertex number of the criginal grapht®,

This paper presents a new criterion of testing planarity of a graph based on what the
author obtained before. Foriunately, it is equivalent to finding a spanning tree in another
graph with only linear order of the vertex number of the original one in the worst case.

§ 1. Introduction

Tn the seventies, W. Wu discovered that testing planarity of a graph can be
transformed into solving linear equations on GF (2) based on cohomology theory in
algebralo topology™. Then,Y. Lin found a oriterion of planarity which seemed to be
much simpler'™®. In faot, the only thing that remained for testing planarity was to
solve such linear equations on GF(2) in each of which there were at most two
variables. Furthermore, the problem wag transformed into finding a cireuit with a
certain property or a tree in another graph H relaled to G, the original one.

In the 1979 Monireal Conference on Combinatorics, P. Rosenstiehl proved the
result again in an algebraic way™. In a private communication, P. Rosenstiehl told
Y. Liu that he and his colleague obtained an algorithm in linear time. However, he
had not mentioned what method they used. Of course, the first linear time algorithm
on this topio was due to J. E. Hoperoft and R. E. Tarjan whose paper was published
in 1974, The depth-first search free technique they used plays a substantial role
in the simplification.

This raper provides a new oriterion which, in fact, is a simplified form of the
one we obfained in [2]. Forfunately, from this criterion, a linear time algorithm for
testing planarity of a graph and embedding a planar graph into the plane can be

Manuscript received April 18, 1984,
* Institute of Applied Mathematics, Academia Sinica, Beijing, China.
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deduced. However, the procedure has been described for 3-regular graphs with a
depth—first search tree being a path.

§ 2. A Criterion of Planarity

Let G=(V, E) be a graph with ¥ being the vertex set, & the edge set. Or G is
treated as a 1-oomplex in Enolidean space with G°=V ag O-simplex set, G*=F,
1-simplex set. 7' denotes a spanning tree of @, T'=(7° T*), T°=@°. Here, only
depth—first search trees are considered™, T = (T7°, T!)=(@°, G*—T*) is the cotree
corresponding to T'. Let T'5(@) be the set of all the depth—first searoh frees of G. And,
for T €T (@), let < be the partial order on @° determined by T'.

Proposition 2.1, For any TET (@), there ewisis a unique orieniaiton of
the edges of @, e. g., e={u, v)> represeniing u to v such that

(1) u<v, ife €Ty

(i) wp—n, ife€ T,

Thus the vertices of G can be labelled so that —< becomes <. In what follows,
all the vertices are freated as non-negative integers. For e¢E€T?*, there is a unique
ocooirouit C,(7"), called a fundamental cocirouis, with all the edges in C!(7') being
in T save only for one edge. And, for a €77, there is a unique circuit O,(T'), called
a fundamental circuit, with all the edges in OL(T') being in 7" except for a. A
circuit O or path P with all edges in O* or P! having the same direction is said to
be a dieireuit or dipath respectively.

Proposition 2.2. For TET,(G), all the fundamental ocircuits of G are
dicirouiis and each fundamenial cocirouit of G has all its edges with the same direction
saving only for one edge which belongs to T*.

The vertex with the minimum label is said to be the root. The minimum label
is always set to be 0,

Proposition 2.3. For {u, v) €T*, we always have

(i) 0<y<u and v€ PO, up, for all {u, v>ECh n(T). At each vertez, thers
és ezactly one incoming edge in T™ except for the root. And, for 2-conmected graph @,
the root has valency 1 on T'.

For vE€V, let E,={¢|6e€ E and ¢ is incident to v}. From Proposition 2.8, we
have

Ev=ﬂvUEv(T) UEu(T), (2-1)
where ¢, is the tree edge coming to », Bo(T) = E,NT?, E(T) =E.NT:. Now, let us
introduce variables on GF (2)

@i, s=Ts,t, TFS, (2.2)
for s, or 1 € B, (T) and the other in E,(T)U E,(T), at each vertex v€EV. If both

1012
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s, € E,(T), then @, is said to be a tree variable; otherwise, a cotree variable.

For any two fundamental circuits O4(T"), Os(T), a variable ay,; with s€ O3(T),
t€0L(T) or vice versa is gaid $0 be covariable of 0, (T) and O4(T').

Proposition 2.4. For any two fundamenial oiroviis Oa(T), Os(T") with a, BE
T* having wo end n common, there are, if any, exactly two covariables

Proof If OLN0Oi=0, then no covariable exists; otherwise, there are only two
possible eases. )

Case 1. OLNO%={v}. By symmeiry, we may suppose the tree edge coming to »
10 be in J,. According to Proposition 2.2, only two configurations possibly appear as
follows. In both configurations, z,; and a;,, are the two covariables(in Fig. 2.1).

& : o8, s t
o M f o\ T
a a v G ‘ & v Cs Ce r Cs
sﬁL ; st %~
3‘-————
Fig. 2.1 Fig. 2.2

Oase 2. 0,N0z=P{u, v>. Bimilarly to Case 1, we may also suppose the tree
edge coming 1o % 10 be in O,. From Proposirion 2.2, the only possible configuration
is ag in Fig. 2.2. In this configuration, only @;,; and ),5 are the covariables.

For TE€Tp(@), we define 2 T-immersion of G as such a plane representation
that two edges a, B cross only if a, 8€ T and have no end in common. According 1o
Jordan Axiom, it does exist. Let D= {(a, 8) |&, BET* and no end in common} and
Wap be the characteristio of &, B crossing, i.e., wa,s =1, or 0 according as «, B oross,
or do not for (a, B) €D.

Criterion I, A4 graph @ és planar iff for any given TETH(GF) and a
T—immersion, the equation system on GF (2)

z(a, B) +y(a, B)=1a,s, for (a, B) ED, (2.8)
has a solution, where x(a, B), y(a, B) are the covariables 0f O, and O,
o(a, B) € X ={a|corresponding io an angle with two
edges having different directions},
y(a, B) EY ={y|corresponding to an angle with two
edges having the same direction}
are said to beé a forward, backward variable, respectively.

Remarks. 1. Equation (2.3) is defined by Proposition 2.4.

2. The existence of a solution of (2.8) does not depend on the choice of €
T5(®) and a T-immersion, Thus, a proper ohoice of 7 and & T-immersion are
allowed %0 make the system simpler.

ap
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§ 3. Some Results Derived from the Criterion

Let Z be the set of all variables which occur in (2.8), i.e. Z=X Y is the
vertex set, and two vertices are adjacens iff the two corresponding variables appear in
one equation, or, say, are covariables. The resultant graph, denoted by H3(@), is
said to be the first auxiliary graph of @ for the 7-immersion. Each edge of H; (@) is
assigned a weight as the eonstant term of the corresponding equation.

A circuit in Hi(@) is called s 1-cirouit if the sum of the weights of all edges on
itis 1 (mod 2).

Lemma 8.1. Equation (2.8) has a solution iff there is no 1-cirouit in
Hi(&).

Proof Necessity, If not, suppose 0= 21hiwa-- 2.k to be a 1-oireuit in Hz (&),

fe., E w,, =1 (mod 2). However

0= 3}t 2a) = 3 =1 (mod 2),

a coniradietion appears.

Bufficieney. Let A4(H) be a spanning tree of H3(G). Then since no 1-olrouif
appears in H;(G@), any solution of the equations determined by A(H) can be
extended into a solution of (2.8) determined by the whole H}(QR).

Theorem 3.2, @ is planar iff H+(G) has no fundamental 1-cirouit.

Proof BSince the sum of O-circuits does not contain a 1-circuit, from Lemma
8.1, it follows. )

Lemma 3.3. H7(G) has no 1-circuit iff the sot of all the edges with weight 1 is
a cooycle of H3(G).

Proof Let W, be the set of all the edges with weight 1 in H}(@).

Necessity. Since no 1-oircunit ocours, for any spanning tree A(H) of Hi(@),
there exists an edge A€ A* and w,=1 except for the trivial csse of no edge with
weight 1, in which W= is a cocycle. And we have '

Wa-, 3. CiA).

heat

Therefore, W, is a cooyele of H}(&).

Sufficiency. From W, being a cooycle, for any oireunit O, we have

|WiNO| =0{mod 2),

i.e., C is not a 1-oirouit.

Theorem 3.4“, @ is planar ¢ff W1 és a cocyele of HiH(@).

Proof A direct conclusion of Lemma 3.3 and Theorem 3.2,

Generally, as it is only need to consider the number of edges of G not greater

10144



