O'REILLY

RN
R
R
WRTHRER

(Guide to
Python

Pythoni2iisf&ra (% E1kR

hR% R Kenneth Reitz, Tanya Schlusser &

PythonigiiFf5 R wam
The Hitchhiker’s Guide to Python

Kenneth Reitz, Tanya Schlusser #

Beijing + Boston « Farnham » Sebastopol « Tokyo OREILLY®

O'Reilly Media, Inc $24X %R 7 K % B AL bR

MR FEAFHRM

B B4 B (CIP) #4E

Python {& Wi #6 d « 95 30/ () 5 JE A - #i % (Kenneth
Reitz), () #HJE W - 5 /5 3 (Tanya Schlusser)3 . —5 E
A — PRI AT AR KA R 5 2017.10

3 %4 JiL 3C : The Hitchhiker's Guide to Python

ISBN 978 -7 -5641 —-7374 -6

L.OP NN.0OE- @#H-~ [.O0OHMHFITHEH-
BRFEIT—4EmE -3 V. OTP311.561 - 62

[A B CIP B % 2 (2017) 45 195475 &
E5:10-2017- 348 5

© 2016 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2017. Authorized reprint of the original English edition, 2017 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
¥ LR M d O'Reilly Media, Inc. 8 #& 2016.

JEH IR A B K AR AL RO 2017, b B PP MR A9 R o 45 AR 4T B R A Fe 4 B ALY TR &
—— O'Reilly Media, Inc.# % 7,

WAHTA , RAF B BHF T R BAETH S Fe o F R AETH X EH .

Python {& §if 45 B (RZ EN WO

AR A AT« 25 Ko AL
o e PR UGS 2 5 HB £ < 210096

R A TEE
& it . httpy/www.seupress.com

L FME {4 . press@ seupress.com

Tl + i N ol B = B A R 2
A : 787 Z K X980 Z K 16 FF A
Bk . 21.25

. 416 T

W 2017 4E 10 A% 1 iR

U : 2017 4F 10 A &5 1 R ED

5. ISBN 97875641 - 7374 - 6
fir+ 88.00 JC

MEFHIHD

AFLE A AR RN RS EHTEER. BiEUEE) : 025- 83791830

Preface

Python is big. Really big. You just won't believe how vastly hugely mind-bogglingly
big it is.

This guide is not intended to teach you the Python language (we cite lots of great
resources that do that) but is rather an (opinionated) insider’s guide to our communi-
ty’s favorite tools and best practices. The primary audience is new to mid-level
Python programmers who are interested in contributing to open source or in begin-

ning a career or starting a company using Python, although casual Python users
should also find Part I and Chapter 5 helpful.

The first part will help you choose the text editor or interactive development environ-
ment that fits your situation (for example, those using Java frequently may prefer
Eclipse with a Python plug-in) and surveys options for other interpreters that may
meet needs you don’t yet know Python could address (e.g., there’s a MicroPython
implementation based around the ARM Cortex-M4 chip). The second section dem-
onstrates Pythonic style by highlighting exemplary code in the open source commu-
nity that will hopefully encourage more in-depth reading and experimentation with
open source code. The final section briefly surveys the vast galaxy of libraries most
commonly used in the Python community—providing an idea of the scope of what
Python can do right now.

All of the royalties from the print version of this book will be directly donated to the
Django Girls (https://djangogirls.org/), a giddily joyous global organization dedicated
to organizing free Django and Python workshops, creating open-sourced online tuto-
rials, and curating amazing first experiences with technology. Those who wish to con-
tribute to the online version can read more about how to do it at our website (http://
docs.python-guide.org/en/latest/notes/contribute/).

Xi

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

R

Safari® Books Online

b C ~- Safari Books Online is an on-demand digital library that deliv-
ﬂ Ja f@ rﬁ ers expert content in both book and video form from the

world’s leading authors in technology and business.

xii | Preface

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/the-hitchhikers-guide-to-python.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

Acknowledgments

Welcome, friends, to The Hitchhiker’s Guide to Python.

This book is, to the best of my knowledge, the first of its kind: designed and curated
by a single author (myself—Kenneth), with the majority of the content provided by
hundreds of people from all over the world, for free. Never before in the history of

mankind has the technology been available to allow a beautiful collaboration of this
size and scale.

This book was made possible with:

Community
Love brings us together to conquer all obstacles.

Software projects
Python, Sphinx, Alabaster, and Git.

Services
GitHub and Read the Docs.

Lastly, I'd like to extend a personal thank you to Tanya, who did all the hard work of
converting this work into book form and preparing it for publication, and the incred-
ible O'Reilly team—Dawn, Jasmine, Nick, Heather, Nicole, Meg, and the dozens of
other people who worked behind the scenes to make this book the best it could be.

xiv | Preface

Table of Contents

Preface.............. a8 i § Y T D T B, JT T Xi

Partl. Getting Started

1. Picking an Interpreter.uuuuuuueniiieeiiiie it eee et e teeeaeeanns 3
The State of Python 2 Versus Python 3 3
Recommendations 4
So...37? 4
Implementations 5

CPython 5
Stackless 5
PyPy 6
Jython 6
IronPython 6
PythonNet 7
Skulpt 7
MicroPython 7

2. Properly Installing Python............ o8 8188 w00 W'w7S 61928 B & 0 6 R i i ¢ 43 b B0 A 9

Installing Python on Mac OS X 9
Setuptools and pip 11
virtualenv 12

Installing Python on Linux 12
Setuptools and pip 13
Development Tools 13
virtualenv 15

Installing Python on Windows 15

Setuptools and pip 18
virtualenv 18
Commercial Python Redistributions 19
3. Your Development Environment..........cccoviiiiiiiniiiiieneinnns PP .23
Text Editors 24
Sublime Text 25
Vim 25
Emacs 27
TextMate 28
Atom 29
Code 29
IDEs 29
PyCharm/Intelli] IDEA 31
Aptana Studio 3/Eclipse + LiClipse + PyDev 32
WingIDE 32
Spyder 33
NINJA-IDE 33
Komodo IDE 33
Eric (the Eric Python IDE) 34
Visual Studio 34
Enhanced Interactive Tools 35
IDLE 35
[Python 35
bpython 36
Isolation Tools 36
Virtual Environments 36
pyenv 38
Autoenv 39
virtualenvwrapper 39
Buildout 40
Conda 41
Docker 42
Partll. Getting Down to Business

4. Writing Great Cotle.. .o v sc o v o s vns mio o wo vio s wis s 0 amaiwe sivninin s s wis miss wsn o . 47
Code Style 47
PEP 8 48
PEP 20 (a.k.a. The Zen of Python) 49
General Advice 50

| Table of Contents

Conventions

Idioms

Common Gotchas
Structuring Your Project

Modules

Packages

Object-Oriented Programming

Decorators

Dynamic Typing

Mutable and Immutable Types

Vendorizing Dependencies
Testing Your Code

Testing Basics

Examples

Other Popular Tools
Documentation

Project Documentation

Project Publication

Docstring Versus Block Comments
Logging

Logging in a Library

Logging in an Application
Choosing a License

Upstream Licenses

Options

Licensing Resources

. Reading GreatCode...............coovvevereennnn.

Common Features
HowDol
Reading a Single-File Script
Structure Examples from HowDol
Style Examples from HowDol
Diamond
Reading a Larger Application
Structure Examples from Diamond
Style Examples from Diamond
Tablib
Reading a Small Library
Structure Examples from Tablib
Style Examples from Tablib
Requests

56
59
62
65
66
69
70
72
73
74
76
76
78
81
84
87
87
88
89
89
90
91
93
93
94
95

.......................... 97

98

99

99
102
103
105
106
111
115
118
118
122
130
132

Table of Contents | vii

Reading a Larger Library 132
Structure Examples from Requests 136
Style Examples from Requests 141
Werkzeug 146
Reading Code in a Toolkit 147
Style Examples from Werkzeug 154
Structure Examples from Werkzeug 155
Flask 162
Reading Code in a Framework 162
Style Examples from Flask 168
Structure Examples from Flask 169

6. Shipping Great Code..... Lk s A B R N R W AR G R 4 S Bk e 173
Useful Vocabulary and Concepts 174
Packaging Your Code 175
Conda 175
PyPI 176
Freezing Your Code 179
Pylnstaller 181
cx_Freeze 182
py2app 184
pyZexe 184
bbFreeze 185
Packaging for Linux-Built Distributions 186
Executable ZIP Files 187

Partlll. Scenario Guide

7. UserInteraction...........coovveviiiiiiiiiiiiiniiiiniiiiinnn, £t WL 193
Jupyter Notebooks 193
Command-Line Applications 194
GUI Applications 202
Widget Libraries 202
Game Development 208

Web Applications 209
Web Frameworks/Microframeworks 210

Web Template Engines 213

Web Deployment 219

8. Code Management and Improvement...... ¢ 5cars SO BRSOV NGR B Wiep sioluad & v sws v A3
Continuous Integration 223

viii

Table of Contents

System Administration 224
Server Automation 226
System and Task Monitoring 231

Speed 233
Interfacing with C/C++/FORTRAN Libraries 243

9. Software Interfaces...........oovviiiiiiiiiiiiiiiiiii 249

Web Clients 250
Web APIs 250

Data Serialization 255

Distributed Systems 258
Networking 258

Cryptography 264

10. DataManipulation.iviiiiciiaiisiisisesisossssssisassonneasasas 271

Scientific Applications 272

Text Manipulation and Text Mining 276
String Tools in Python’s Standard Library 277
Image Manipulation 280

11, Data PersiStemOe, . .o b crvmie mos wis aw smm mwealo s oim wims w2 min roes wim o o 2 im0 e 283
Structured Files 283
Database Libraries 284

R AAdItonal NOTES. o . v v v won s i s wims wie s 508 wiowb arvre s o 978 avid sakd s & 0k biwia bk 301

NI . s s aie i35 s i aivi s s wice s S R RS 08 NS SR e § W i o a3 e 60 M

Tableof Contents | ix

PART |
Getting Started

This part of the guide focuses on setting up a Python environment. It was inspired by
Stuart Ellis’s guide for Python on Windows (http://www.stuartellis.eu/articles/python-
development-windows/), and consists of the following chapters and topics:

Chapter 1, Picking an Interpreter

We compare Python 2 and Python 3, and share some interpreter options other
than CPython.

Chapter 2, Properly Installing Python
We show how to get Python, pip, and virtualenv.

Chapter 3, Your Development Environment
We describe our favorite text editors and IDEs for Python development.

{8
P .Jﬁ'gni.#ﬁ

Lt
'

Ioeon = B et 0, Pt el A . tma
L " ' B N

. f—ﬂllril-""l'-.ln.-'l'-l.ﬁ"'h-n.- ™. rae s = A=
I . 4 wH] uaRrak ,-.i'nr.llﬁ) L e L

N o \I : PR TRt "'.r.l

e e S galreufel) (- 7K 'l..',,.lfln. '||_-._.| ks
{ P

- 1.I-:|' JI"..--'-'l.'I' = L qin,

B s B ‘.;"m_-ﬂl-' lapg """ weRlie T

FL ks I, - "=y = = 1

R P T PR

CHAPTER1
Picking an Interpreter

The State of Python 2 Versus Python 3

When choosing a Python interpreter, one looming question is always present:
“Should I choose Python 2 or Python 3?” The answer is not as obvious as one might
think (although 3 is becoming more compelling every day).

Here is the state of things:

« Python 2.7 has been the standard for a long time.

« Python 3 introduced major changes to the language, which some developers are
unhappy with.!

« Python 2.7 will receive necessary security updates until 2020 (https:/
www.python.org/dev/peps/pep-0373/).

« Python 3 is continually evolving, like Python 2 did in years past.

You can now see why this is not such an easy decision.

1 If you don't do much low-level networking programming, the change was barely noticeable outside of the
print statement becoming a function. Otherwise, “unhappy with” is kind of a polite understatement—devel-
opers responsible for large, popular web, socket, or networking libraries that deal with unicode and byte
strings had (or still have) extensive changes to make. Details about the change, direct from the first introduc-
tion of Python 3 to the world, start off with: “Everything you thought you knew about binary data and Uni-
code has changed?” (http://bit.ly/text-vs-data)

Recommendations

The way we see it, a truly hoopy frood* would use Python 3. But if you can only use
Python 2, at least you're still using Python. These are our recommendations:

Use Python 3 if...
« You love Python 3.

« You don’'t know which one to use.

+ You embrace change.

Use Python 2 if...
« You love Python 2 and are saddened by the future being Python 3.

« The stability requirements of your software would be impacted.’

+ Software that you depend on requires it.

S0...3?

If youre choosing a Python interpreter to use, and aren’t opinionated, then use the
newest Python 3.x—every version brings new and improved standard library mod-
ules, security, and bug fixes. Progress is progress. So only use Python 2 if you have a
strong reason to, such as a Python 2-exclusive library that has no adequate Python 3-
ready alternative, a need for a specific implementation (see “Implementations” on
page 5), or you (like some of us) love and are inspired by Python 2.

Check out Can I Use Python 3? (https://caniusepython3.com/) to see whether any
Python projects you're depending on will block adoption of Python 3.

For further reading, try Python2orPython3 (http://bit.ly/python2-or-python3), which
lays out some of the reasoning behind a backward-incompatible break in the lan-
guage specification, and links to detailed specifications of the differences.

If you're a beginner, there are far more important things to worry about than cross-
compatibility between all of the Python versions. Just get something working for the
system you've got, and cross this bridge later.

2 Someone who's really amazingly together. We mean, who really knows where their towel is.

3 Here’s a link to a high-level list of changes (http://python3porting.com/stdlib.html) to Python’s Standard
Library.

4 | Chapter 1:Picking an Interpreter

Implementations

When people speak of Python, they often mean not just the language but also the
CPython implementation. Python is actually a specification for a language that can be
implemented in many different ways.

The different implementations may be for compatibility with other libraries, or
maybe for a little speed. Pure Python libraries should work regardless of your Python
implementation, but those built on C (like NumPy) won't. This section provides a
quick rundown on the most popular implementations.

This guide presumes youre working with the standard CPython
implementation of Python 3, although we'll frequently add notes
when relevant for Python 2.

(Python

CPython (http://www.python.org/) is the reference implementation* of Python, writ-
ten in C. It compiles Python code to intermediate bytecode which is then interpreted
by a virtual machine. CPython provides the highest level of compatibility with
Python packages and C extension modules.®

If you are writing open source Python code and want to reach the widest possible
audience, use CPython. To use packages that rely on C extensions to function, CPy-
thon is your only implementation option.

All versions of the Python language are implemented in C because CPython is the
reference implementation.

Stackless

Stackless Python (https://bitbucket.org/stackless-dev/stackless/wiki/Home) is regular
CPython (so it should work with all of the libraries that CPython can use), but with a
patch that decouples the Python interpreter from the call stack, making it possible to
change the order of execution of code. Stackless introduces the contepts of tasklets,
which can wrap functions and turn them into “micro-threads” that can be serialized
to disk for future execution and scheduled, by default in round-robin execution.

4 The reference implementation accurately reflects the language’s definition. Its behavior is how all other imple-
mentations should behave.

5 C extension modules are written in C for use in Python.

Implementations | 5

