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Preface to the Second Edition

This textbook introduces the main principles of computational physics, which in-
clude numerical methods and their application to the simulation of physical sys-
tems. The first edition was based on a one-year course in computational physics
where I presented a selection of only the most important methods and applications.
Approximately one-third of this edition is new. I tried to give a larger overview of
the numerical methods, traditional ones as well as more recent developments. In
many cases it is not possible to pin down the “best” algorithm, since this may de-
pend on subtle features of a certain application, the general opinion changes from
time to time with new methods appearing and computer architectures evolving, and
each author is convinced that his method is the best one. Therefore I concentrated
on a discussion of the prevalent methods and a comparison for selected examples.
For a comprehensive description I would like to refer the reader to specialized text-
books like “Numerical Recipes” or elementary books in the field of the engineering
sciences.

The major changes are as follows.

A new chapter is dedicated to the discretization of differential equations and the
general treatment of boundary value problems. While finite differences are a natural
way to discretize differential operators, finite volume methods are more flexible if
material properties like the dielectric constant are discontinuous. Both can be seen ds
special cases of the finite element methods which are omnipresent in the engineering
sciences. The method of weighted residuals is a very general way to find the “best”
approximation to the solution within a limited space of trial functions. It is relevant
for finite element and finite volume methods but also for spectral methods which
use global trial functions like polynomials or Fourier series.

Traditionally, polynomials and splines are very often used for interpolation. I in-
cluded a section on rational interpolation which is useful to interpolate functions
with poles but can also be an alternative to spline interpolation due to the recent
development of barycentric rational interpolants without poles.

The chapter on numerical integration now discusses Clenshaw-Curtis and Gaus-
sian methods in much more detail, which are important for practical applications
due to their high accuracy.

vii



viii Preface to the Second Edition

Besides the elementary root finding methods like bisection and Newton-Raphson,
also the combined methods by Dekker and Brent and a recent extension by Chandru-
patla are discussed in detail. These methods are recommended in most text books.
Function minimization is now discussed also with derivative free methods, includ-
ing Brent’s golden section search method. Quasi-Newton methods for root finding
and function minimizing are thoroughly explained.

Eigenvalue problems are ubiquitous in physics. The QL-method, which is very
popular for not too large matrices is included as well as analytic expressions for
several differentiation matrices.

The discussion of the singular value decomposition was extended and its appli-
cation to low rank matrix approximation and linear fitting is discussed.

For the integration of equations of motion (i.e. of initial value problems) many
methods are available, often specialized for certain applications. For completeness,
I included the predictor-corrector methods by Nordsieck and Gear which have been
often used for molecular dynamics and the backward differentiation methods for
stiff problems.

A new chapter is devoted to molecular mechanics, since this is a very important
branch of current computational physics. Typical force field terms are discussed as
well as the calculation of gradients which are necessary for molecular dynamics
simulations.

The simulation of waves now includes three additional two-variable methods
which are often used in the literature and are based on generally applicable schemes
(leapfrog, Lax-Wendroff, Crank-Nicolson).

The chapter on simple quantum systems was rewritten. Wave packet simulation
has become very important in theoretical physics and theoretical chemistry. Several
methods are compared for spatial discretization and time integration of the one-
dimensional Schrodinger equation. The dissipative two-level system is used to dis-
cuss elementary operations on a qubit.

The book is accompanied by many computer experiments. For those readers who
are unable to try them out, the essential results are shown by numerous figures.

This book is intended to give the reader a good overview over the fundamental
numerical methods and their application to a wide range of physical phenomena.
Each chapter now starts with a small abstract, sometimes followed by necessary
physical background information. Many references, original work as well as spe-
cialized text books, are helpful for more deepened studies.

Garching, Germany Philipp O.J. Scherer
February 2013



Preface to the First Edition

Computers have become an integral part of modern physics. They help to acquire,
store and process enormous amounts of experimental data. Algebra programs have
become very powerful and give the physician the knowledge of many mathemati-
cians at hand. Traditionally physics has been divided into experimental physics
which observes phenomena occurring in the real world and theoretical physics
which uses mathematical methods and simplified models to explain the experimen-
tal findings and to make predictions for future experiments. But there is also a new
part of physics which has an ever growing importance. Computational physics com-
bines the methods of the experimentalist and the theoretician. Computer simulation
of physical systems helps to develop models and to investigate their properties.

Computers in Physics
Experimental Physics

data collection, storage and processing

Communication, data transmission
data storage and data mansgement
email,www.fip

Numerical maths Symbolic Computing
approximative methods algebra programs

Visualisation & presentation
Computer graphics, processing of text and images

Theoretical Physics Computational Physics
approximative solutions Computer models & experiments

This book is a compilation of the contents of a two-part course on computational
physics which I have given at the TUM (Technische Universitit Miinchen) for sev-
eral years on a regular basis. It attempts to give the undergraduate physics students
a profound background in numerical methods and in computer simulation methods
but is also very welcome by students of mathematics and computational science

ix



X Preface to the First Edition

who want to learn about applications of numerical methods in physics. This book
may also support lecturers of computational physics and bio-computing. It tries to
bridge between simple examples which can be solved analytically and more compli-
cated but instructive applications which provide insight into the underlying physics
by doing computer experiments.

The first part gives an introduction into the essential methods of numerical math-
ematics which are needed for applications in physics. Basic algorithms are explained
in detail together with limitations due to numerical inaccuracies. Mathematical ex-
planations are supplemented by numerous numerical experiments.

The second part of the book shows the application of computer simulation meth-
ods for a variety of physical systems with a certain focus on molecular biophysics.
The main object is the time evolution of a physical system. Starting from a simple
rigid rotor or a mass point in a central field, important concepts of classical molecu-
lar dynamics are discussed. Further chapters deal with partial differential equations,
especially the Poisson-Boltzmann equation, the diffusion equation, nonlinear dy-
namic systems and the simulation of waves on a 1-dimensional string. In the last
chapters simple quantum systems are studied to understand e.g. exponential decay
processes or electronic transitions during an atomic collision. A two-state quantum
system is studied in large detail, including relaxation processes and excitation by an
external field. Elementary operations on a quantum bit (qubit) are simulated.

Basic equations are derived in detail and efficient implications are discussed to-
gether with numerical accuracy and stability of the algorithms. Analytical results
are given for simple test cases which serve as a benchmark for the numerical meth-
ods. Many computer experiments are provided realized as Java applets which can
be run in the web browser. For a deeper insight the source code can be studied and
modified with the free “netbeans”! environment.

Garching, Germany Philipp O.J. Scherer
April 2010

l www.netbeans.org.
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