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A Proof for a Graphic Method for
Solving the Transportation Problem*

Zhexian Wan (7 # %)**

(Institute of Mathematics, Academia Sinica)

1. The Method

In September, 1958, we learned a graphic method for solving the trans-
portation problem from a certain transportation department in Peking. And
we were asked to work out a mathematical proof for this method. The method
may be stated as follows:

Suppose it is desired to set up a transportation schedule to distribute a
certain goods from several sources to several destinations. The total amount
of supply of all the sources is assumed to be equal to the total amount of
demand of all the destinations. The schedule should be such that the total
“transportation cost” (in terms of ton-kilometres, for instance) for realizing it
would be a minimum.

Before giving the transportation schedule, we first draw a map showing all
the sources and destinations, and their connecting lines (railways for instance),
with the sources denoted by small circles “O” and the destinations by crosses
“x”, The numbers given beside the sources and those beside the destinations

are their respective amounts (in terms of tons, say) of supply and demand.

* First reported in Chinese in Shuzue Tongbao (Bulletin of Chinese Mathematics), No.
11, pp. 478—482, 1958.

** In collaboration with Comrades Shen Xin-yao, Xu Yi-chao, Gan Dan-yan, Zhu Yong-
jin, and Yang Xi-an.



Along the connecting lines are given the distances (in terms of kilometres, say)

between the neighbouring cities or towns. Such a distribution map is shown in

Fig. 1.
Shan
Zhang Tang 5(0
1
%ng 108 n/100
Baox 30 600 Cang
Shl
Fig. 1
Table 1 gives an illustrative schedule.
Table 1
Destinations . .
Shan Jin Jing De Bao
Sources
Tang 0 70 30 0 0
Zhang 0 0 0 0 20
Cang 20 0 0 30 10
Shi 0 0 20 0 0

For realizing this schedule, a sort of flow diagram is required. Suppose
there are goods, m tons say, flowing from source A to destination B. A flow
vector is drawn alongside of the line segment representing the railway from A
(on the right) to B (on the left) with the amount of flow m marked above the
flow vector (see Fig. 2). If along the same line there are more th;a,n one flow
vector in the same sense, a single flow vector is drawn with the total amount
of transportation indicated, as illustrated in Fig. 3. If this is done for all the
section lines, a complete flow diagram of the schedule can be drawn as in Fig. 4.
It is evident that the total “transportation costs” (in terms of ton-kilometres,

say) of schedules with the same flow diagram are equal.
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Fig. 2 Fig. 3

Clearly, when counter flow vectors occur in the flow diagram, for example,
in the case of Fig. 4, when counter flows occur between the Jing-Bao and Jin-
Tang lines, the transportation schedule is certainly not the best. In this case,
the schedule should be changed so as to obtain a new one, of which the flow
diagram contains no counter flows. For example, Fig. 4 may be changed into
Fig. 5 in which counter flows disappear. The corresponding transportation

schedule is shown in Table 2.

- Shan Shan
Zhang ang/ Zhang 80 Tang X
Jin 30 Jin / o——> 20 Jing ]m/o% 20
200\~xg «—— Z—¥0 2 28\ 20
20 50 70 20 20
201 fZO 20 X
Bao X 30 60 O Cang Bao x 30 600 Cang
30 40 X
20«10 30} 2010 30
Shi De Shi
Fig. 4 Fig. 5
Table 2
Destinati
eetinations Shan Jit Jing De Bao
Sources
Tang 20 70 10 0 0
Zhang 0 0 20
Cang 0 0 20 30 10
Shi 0 0 0 0 20

In the following we shall consider only schedules with flow diagrams that
contain no counter flows.
Now let us consider a cycle C' in a flow diagram; by a cycle is meant a

closed path without self-intersecting points. There may be flow vectors in the




positive sense of C (i.e. in the counterclockwise sense) and in the negative sense
of C (i.e. in the clockwise sense). For distinction, flow vectors in the positive
sense are placed outside the cycle, while those in the negative sense inside the
cycle. Denote the total length of C by S(C), that of the flow vectors in the
positive sense of C' by S*(C), and that of the flow vectors in the negative sense
of C by §7(C). A cycle C is said to be normal if both ST (C) < %S(C) and

1
S~ (C) < 55 (C) hold. A flow diagram is said to be normal, if each of its cycles
is normal. Then the graphic method asserts:“A transportation schedule is an

optimal one if and only if its flow diagram is normal”?),

2. The Proof

Before we come to the proof of the above mentioned criterion, it may be
remarked that branching lines of the distribution map can be omitted in the
following manner. At a branching point is recorded only the net supply or
the net demand, as the case may be, of the whole branching line (including
the branching point), instead of the original amount of supply or demand.
For instance, in Table 2, the Jin-Shan line can be omitted by changing Jin to
a source with a net supply of 10 units and the Jing-Zhang line can also be
omitted by considering Jing to be a destination with a net demand of 30 units.
Thus we obtain the following distribution map that contains no branching lines
(Fig. 6).

First let us consider the case where the flow diagram contains only a
single cycle. For simplicity, we regard the demand of each destination to be 1
unit. In fact, if a destination demands m units, we may imagine a series of m
destinations, each with a demand of 1 unit, situated at the original. destination

with distance 0 between any two such destinations.

1) The original criterion, as we learned from the transportation company, states that
a transportation schedule is optimal if and only if all those cycles which contain no other
cycles inside themselves and all those which are not contained in any other cycle are normal.
But this condition is not sufficient as may be shown by examples. The present criterion was

suggested during the proof.

W 4



A Proof for a Graphic Method for Solving the Transportation Problem

Jing Jin
30 x 10
Bao x 30 600 Cang
oux
Shi De
Fig. 6

Suppose that there is a transportation schedule with a non-normal flow
diagram G (see Fig. 7). For definiteness, assume that ST(G) > %S(G). Then
we may draw a new flow diagram G’ which differs from G only in that the end
point of each flow vector in the positive sense in G is now supplied by the flow
vector in the negative sense in G’, where other destinations are supplied by
the same sources in G’ as in G (see Fig. 8). (The process of change from G
to G’ is called the process of shrinking the flow vector in the positive sense by
one station.) The “transportation cost” for transporting the goods to the end
points of the flow vectors in the positive sense of G is equal to S1(G) according
to G, and equal to S™(G’) according to G'. Since S*(G) + S~ (G’) < S(G)
and S*+(G) > %S(G), o ool

5—(G") < S*(G).

Thus the transportation schedule with flow diagram G’ is better than that with
flow diagram G. This indicates that a schedule with a nonnormal map is not
optimal.

Next, let us prove that transportation schedules with normal flow diagrams
are always optimal. By the above proof, we know that normal flow diagrams
always exist. If there is only one flow diagram, the statement just made is
self-evident. Suppose now there are more than one flow diagram. Then we
may arrange all the flow diagrams in an order G1,Ga, - , Gy, such that G;

is the flow diagram without flow vectors in the negative sense, G,, is the flow




diagram without flow vectors in the positive sense, and each G;41 is obtained
from the preceding G; by the process of shrinking the flow vectors of G; in
the positive sense by one station (i = 1,2,--+ ,n — 1). Assume that G; is the
normal diagram with the smallest subscript and G; is the normal diagram with
the greatest subscript, then i < j, and the flow diagrams between G; and G;
are all normal. If 4 = j, this is quite evident. Suppose now ¢ < j. It is sufficient
to show that any two neighbouring flow diagrams Gy and Gg+1(¢ < k < j)
have the same total “transportation cost”. Notice that Gy and Gj4i differ
only in the end points of the flow vectors in the positive sense of Gg. Since
SHGh) < %5, S~ (Grs1) < %s, S~ (Grs1) < S— S+(Gx), we have S+(Gy) =
S™(Grt1) = %S , S being the total length of the cycle. This proves that Gy
and Gg+1 have the same “transportation cost”. Consequently, normal flow

diagrams have the same “transportation cost”. This finishes the proof for the

case that the communication map consists of a single cycle.

3 3
/o\)( < —
+/K > \+ +/+ \X}.y
/ /4 N\
e b's */~\
{ { j
X
o b /
\‘—A\+ &£ 07 \+\ ~— 0" >
X 6 ‘\'\.X 6
Fig. 7 Fig. 8

Now consider the general case. By the same argument as in the case of a
single cycle, we can prove that transportation schedules with nonnormal flow
diagrams are not optimal. It remains to show that schedules with normal flow
diagrams have the same “transportation cost”. Let G and G’ be two distinct
normal flow diagrams (Fig. 9), which, of course, belong to different schedules.
In comparing G with G’, we may assume that there are no common flow vectors
in G and G’. In fact, if there is a common flow vector, we may remove a certain

amount of transportation from both G and G’ so as to obtain flow diagrams
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G4 and G’y without common flow vectors? .

OA\‘
& -x B,
Ay
B,
G

Fig. 9

Now we apply induction to the total amount of supply of all the sources
of G. Let us start with a source A;. Assume that, in G, one ton of goods is
transported from A; to destination B;. Then in G’, one ton needed by B; is
supplied by another source A; . Then is G, A; supplies another destination
Bj. Continuing in this way, and assuming that B; is the first destination which

coincides with a further destination Bg(7 < k), we obtain a closed path Z:
(*) Bi)Ai+1)Bi+1)"' 7AkaBk =Bi-

In general, this is a self-intersecting closed path. Along this closed path, goods
supplied according to G go round in one sense, while those supplied according
to G’ go round in another (see Fig. 9). It is evident that the closed path Z
may be a single cycle or may be decomposed into several cycles C1, Cs, - - -. For
example, the closed path shown in Fig. 10 may be decomposed into two cycles

as shown in Fig. 11.

<
<

Fig. 10 Fig. 11

2) This idea is due to Professor Tian Fang-zeng. We are indebted to Professor Tian for

his valuable suggestions.




Then in each cycle, the flow vectors of G are all of the same sense, and
those of G’ are all of the same sense too. Since both G and G’ are normal,
the “transportation costs” for carrying one ton of goods according to G and
G’ in each of these cycles C;(¢ = 1,2,---) forming Z, are the same, i.e. both
are equal to %S(C,-). Thus the “transportation costs” for carrying one ton of
goods according to G and G’ in the closed path Z are also the same. Removing
one ton of goods along the closed path Z from both G and G’, we obtain two
new normal flow diagrams G; and G’; with a smaller total amount of supply
of all sources. By induction hypothesis, G; and G’; have the same amount of
transportation, so do G and G’

The proof is now complete.

Remarks 1. After we finished the above proof in September 1958,
we learned that Professor Xu Guo-zhi and Comrade Gui Xiang-yun had also
obtained a proof for the case of a communication map consisting of a single
cycle by showing that the criterion of the graphic method is the same as that
given by the simplex method. In 1959, the general case was also considered by
them with the same method. But their proof has not yet been published.

2. That the transportation problem can be solved by the simplex method
is well known. Recently, we learned that the problem had also been solved by

JI. B. Karroposuu and M. K. FaBypur by another method (1,
References

[1] Kanroposuy, JI. B., I'apypun, M. K. IIpuMeneHre MaTeMaTUdeCKHX METOIOB B BOMpPOCAX
aHanu3a rpy3ororoko, C6. “npobnemsi noewviujenusn s¢fexmuenocmu pabomvl mpancno-
pma”, AH CCCP. 1949, crp. 110—138.



Automorphisms and Isomorphisms of
Linear Groups over Skew Fields

Hongshuo Ren, Zhexian Wan, and Xiaolong Wu

Let K be a skew field and n > 2 be an integer. Notations GL(n, K),
SL(n, K), PGL(n, K) and PSL(n, K) are defined as usual. If X € SL(n, K),
we write X for its projection image in PSL(n,K). An automorphism A of
PSL(n, K) is called standard if there exist a matrix A € GL(n,K) and an

automorphism o or an antiautomorphism 7 of K such that
AX = AX°A-1 for all X € PSL(n, K)

or

AX = A(X'")-1A-1 for all X € PSL(n, K),

where X° (resp. XT7) is the matrix obtained by the action of o (resp. 7) on
each entry of X, and X" is the transpose of X.

We have completed the proof of the following theorem [5, 6]:

Theorem For any skew field K and any integer n = 2, all automor-
phisms of PSL(n, K) are standard.

Remarks (1) The theorem can be generalized to any group A with
PSL(n,K) C A C PGL(n,K) .

(2) The theorem can be generalized to any group A with SL(n,K) C A C

1980 Mathematics Subject Classification (1985 Rewvision). Primary 20G35.
Projects supported by the Science Fund of the Chinese Academy of Sciences nos. 85188
and 85204.
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GL(n, K), where the definition of “standard” is modified by a homomorphism
£ : A — the center of the multiplicative group of K.

(3) With minor modification of the proof of the theorem, we proved in
[7] that if K and K; are skew fields, n,n; > 2 are integers and PSL(n, K) is
isomorphic to PSL(n;, K1), then n = n; and K is isomorphic or anti-isomorphic
to K, with the only exceptions: PSL(2,F4) = PSL(2,F5) and PSL(2,F7) &
PSL(3,F»).

Proof of the Theorem O. Schreier and van der Waerden proved the
theorem for commutative K in 1928 [8]. L. Hua corrected a mistake in their
proof in 1948 [2]. J. Dieudonné proved the theorem for all n # 2,4 in 1951 [1].
L. Hua solved the case n = 4 in 1951 [3]. L. Hua and Z. Wan solved the case
n = 2, char K > 0 in 1953 [4]. Therefore, only the case n = 2, char K = 0 was
left open.

Now write K* for the multiplicative group of K, Z for the center of K,
K¢ for the commutator subgroup of K*, and I for the identity matrix of order
2. Assume from now on that n = 2 and char K = 0. If § is a subset of
PSL(2, K), denote by CS the centralizer of S in PSL(2, K') and by C2S the set
{X? X € CS}. If S is a group, denote by DS the commutator subgroup of S.
0

1 _
First assume —1 € K¢, Write A( 5 ) = A. Then we may assume

— 1
A=((l) 3)forsomea€Z. WriteBzA—l(O 01 ) Then B is of

0 b e
the form | © v or .xB={*® ¢ and CC?4A contains an
0 d c d 0 d ;

element | © Y , Ty # 0, then Lo ¢ CCC?A. But k@ €
y 0 -1 0 d

CCC? ~
0

), so we get a contradiction. If B = ( g 3 ) and CC%4

T «
contains no element of the form ( Y

), zy # 0, then CC?4 has at
Yy =z

w10
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0

|
most four elements whereas CC’Z( ) has infinitely many elements.

0 b
So we again get a contradiction. Therefore, we must have B = ( o )
c

1
Conjugating by ( ), we may assume B = ( (1) g ), B € Z. Hence

0 ¢!

PSL(Q,Z)=D002{<(1) _01 )(S g)}
e {12000}

=PSL(2, 2).

By the known result for the commutative case, we may assume

(o) (00) = a(i9)-(370)

Now by the well-known method we can show that A is standard.

Now we assume —1 ¢ K°. The main steps of the proof are:

=1 - i R—
(l)WriteA((; 3 ):S,A(O {2>=W.Thewemayassume

S?=al, (SW?3=pI, (W*SWS)®=~I, forsomea,f3,vE€ Z,

-1 1 1/2
since ( (1) 4 ) and ( o { ) satisfy similar relations. A study of the

elements of order three in PSL(2, K) shows (8,7 € {z3|z € Z}. Hence by

choosing representatives of S and W, we may assume § =y = 1.

a,

b
(2) We show that W is triangulizable. Define M (2,K) = { ( ¥ p )
c

b,c,d € K ;. We may regard M (2, K) as an extension ring over K by the map

aral, foralla € K.

11 eSS



If a ¢ K2 = {a®|a € K}, we may assume S = < 2 z ), a € A. Write

W:(w x).Deﬁne
Yy oz

. =1
A=Y ) p_amar =0 U ey, B=( 1),
0 1 1 s 1 T

Then conjugate by BA in GL(2, M (2, K)). We get

BASA™'B! = ( ; ) ) , where R=—ay ! ((ywy™' +yT)* —a'I),
*

Bawa—pi— (T 1)
0 T

* X
When R is invertible, we can conjugate by a matrix of the form ( 1 )

in GL(2,M(2,K)) to send S and W to matrices of the form ( (1) g ) and

X

0
that (T3 — I)(T® —I) = 0. So T'*® and hence W is triangulizable in GL(2, K).
If X2 4+ T2 is not invertible, then neither is 7 — o~ by (1). So T* and hence

, respectively. If X2 + T2 is invertible, then we deduce from (1)

W is triangulizable. If R is not invertible, then we must have R = 0 since
a ¢ K2. Hence (ywy~! —yT)? —a~'I = 0. But this means WS = SW, Which
is impossible.

Now assume o € K2. Then a = 6? for some § € Z. We can assume

= ( Z 2 ) Write W, A, T, B as in the last paragraph. We have
-6 0
BASA™'B~! = ( 5 ) , where R = 20(T — ywy™"),
Bawa-pt—( T 1)
0 T

e 12
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If R is invertible, we can proceed as in the case a € K2. If R is not invertible,

then T — ywy ™! is not invertible. So T and hence W is triangulizable in
GL(2, K).
. 0 1 w T
(3) Write S = ,a € ZW = . If y =0, we can use
a 0 Yy =z

equalities in (1) toget w=2"'€ Z and z = (w+w™1)"1. So

3 0 -1 1 1/2 B s
PSL(2,Z) = DC (1 5 )’(0 1) =DC {S,W} =PSL(2, Z)

01
and we are through. If x = 0, we can conjugate by 0 and return to the
e

case y = 0. If zy # 0, then we must have uzu+2u—uw—y = 0 for some u € K

1 alu
since W is triangulizable. When u? # a, we can conjugate by ( g )
U

u 0
and then use equalities in (1) to get a contradiction. This completes the proof.

1 0
and return to the case y = 0, When u? = a, we can conjugate by ( >
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