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Surface Embeddability of Graphs via Reductions
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Abstract: On the basis of reductions, polyhedral forms of Jordan axiom on closed curve
in the plane are extended to establish characterizations for the surface embeddability of a

graph.

Key Words: Surface, graph, Smarandache A°-drawing, embedding, Jordan closed cure

axiom, forbidden minor.

AMS(2010): 05C15, 05C25

81. Introduction

A drawing of a graph G on a surface § is such a drawing with no edge crosses itself, no adjacent
edges cross each other, no two edges intersect more than once, and no three edges have a
common point. A Smarandache XS -drawing of G on § is a drawing of G on S with minimal
intersections A%. Particularly, a Smarandache O-drawing of G on S, if existing, is called an
embedding of G on S.

The classical version of Jordan curve theorem in topology states that a single closed curve C
separates the sphere into two connected components of which € is their common boundary. In
this section, we investigate the polyhedral statements and proofs of the Jordan curve theorem.

Let ¥ = ¥(G; F') be a polyhedron whose underlying graph G = (V, E) with F' as the set
of faces. If any circuit C' of G not a face boundary of 3} has the property that there exist two
proper subgraphs In and Ou of G such that

In| JOu=G; In[)Ou=C, (A)

then ¥ is said to have the first Jordan curve property, or simply write as 1-JCP. For a graph G,
if there is a polyhedron ¥ = %(G; F') which has the 1-JCP, then G is said to have the 1-JCP
as well.

Of course, in order to make sense for the problems discussed in this section, we always

suppose that all the members of #" in the polyhedron ¥ = ¥(G; I) are circuits of G.

Theorem A (First Jordan curve theorem) G has the 1-JCP If, and only ¢f, G is planar.

Proof Because of Hi(X) = 0,2 = ¥(G; F), from Theorem 4.2.5 in [1], we know that

!Received December 25, 2010. Accepted August 25, 2011
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Im &y = Ker 8y = C, the cycle space of G and hence Im 92 2 F which contains a basis of C.
Thus, for any circuit C' ¢ F', there exists a subset D of F' such that

C=) 8fiC= ) &f. (B)

feb feF\D

Moreaver, if we write
Ouw=0[|J fl; In=0[ |J A,
fep fcF\D

then Ou and In satisfy the relations in ( A) since any edge of G appears exactly twice in the
members of F. This is the sufficiency.

Conversely, if G is not planar, then G only have embedding on surfaces of genus not 0.
Because of the existence of non contractible circuit, such a circuit does not satisfy the 1-JCP
and hence G is without 1-J'ZP. This is the necessity. [l

Let & = E(G*; F") be a dual polyhedron of ¥ = ¥(G; F). For a circuit C' in G, let
C* = {e'| Ve € C7}, or say the corresponding vector in Gf, of C € G,.

Lemma 1 Let C be a circuit in . Then, G*\C* has at most two connected components.

Proof Suppose H* be a connected component of G*\C* but not the only one. Let D be
the subset of F' corresponding to V(H"*). Then,

=Y afce
feb
However, if @ # C’ C C, then C itself is not a circuit. This is a contradiction to the condition of
the lemma. From that any edge appears twice in the members of F', there is only one possibility
that

fEF\D
Hence, F\D determines the other connected component of G*\C* when ¢’ = C. O

Any circuit C in G which is the underlying graph of a polyhedron ¥ = ¥(G; F) is said
to have the second Jordan curve property, or simply write 2-JCP for ¥ with ite dual ¥* =
Y(G*; £*) if G*\C* has exactly two connected components. A graph G is said to have the 2-
JCP if all the circuits in G have the property.

Theorem B(Second Jordan curve theorem) A graph G has the 2-JCP if, and only if, G is
planar.

Proof To prove the necessity. Because for any circuit ' in G, G*\C* has exactly two
connected components, any C'* which corresponds to a circuit C in @ is a cocircuit. Since any
edge in G* appears exactly twice in the elements of V*, which are all cocircuits, from Lemma
1, V* contains a basis of Ker d;. Moreover, V* is a subset of Im §). Ience, Ker 4; C Im dp.
From Lemma 4.3.2 in [1], Im &  Ker §;. Then, we have Ker 87 =Im &}, i.e., Hy(X*) = 0.
From the dual case of Theorem 4.3.2 in [1], G* is planar and hence so is G. Conversely, to
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prove the sufficiency. I'rom the planar duality, for any circuit C in G, C* is a cocircuit in G*.
Then, G*\C* has two connected components and hence C' has the 2- JCP. a

For a graph G, of course connected without loop, associated with a polyhedron ¥ =
¥(G; F), let C be a circuil and F¢, the set of edges incident to, but not on C. We may define
an equivalence on K¢, denoted by ~¢ as the transitive closure of that Va,b € K¢,

ar~cbe If €F, (*Cla,b)bP C f) ©
\/(b_‘BC(b,a)rJ,‘aC ),

where C(a, b), or C(b,a) is the common path from a to b, or from b to a in C N f respectively.
It can be seen that |Eg/ ~¢ | < 2 and the equality holds for any C not in F only if ¥ is
orientable.

In this case, the two equivalent classes are denoted by Ey = E-(C) and £r = Er(C).
Further, let V, and Vg be the subsets of vertices by which a path between the two ends of two
edges in E; and Fx without common vertex with C passes respectively.

From the connectedness of G, it is clear that Vy UV = VAV(C). EV,NVg =0, then C is
said to have the third Jordan curve property, or simply write 3-JCP. In particular, if C has the
3-JCP, then every path from V. to Vg (or vice versa) crosses C' and hence C has the 1-JCP. If
every circuit which is not the boundary of a face f of ¥(G), one of the underlain polyhedra of
G has the 3-JCP, then G is said to have the 3-JCP as well.

Lemma 2 Let C be a circuit of G which is associated with an orientable polyhedron ¥ =
¥(G; F). If C has the 2-JCP, then C has the 3-JCP. Conversely, if V2 (C') # 0, Vr(C) # 0 and
C has the 3-JCP, then C has the 2-JCP.

Proof For a vertex v* € V* = V(G*), let f(v*) € F be the corresponding face of ¥.
Suppose In* and Ou* are the two connected components of G*\C* by the 2-JCP of C. Then,

In= |J f@)andOu= [|] f@)
vrein® v*eOu*

are subgraphs of G such that In UOu = G and InNOu = C. Also, B C Inand Eg C Ou (or
vice versa). The only thing remained is to show V; NVx = 0. By contradiction, if V; NVxg £ 0,
then In and Ou have a vertex which is not on C in common and hence have an edge incident
with the vertex, which is not on C, in common. This is a contradiction to In N Ou = C.

Conversely, from Lemma 1, we may assume that G*\C* is connected by contradiction.
Then there exists a path P* from v} to v in G*\C* such that V(f(v1))NVe # Dand V(f(vi)N
Vr #£ 0. Consider

H= [] fe)cG
v EP”

Suppose P = vjvy -+ - v 18 the shortest path in H from V; to V.

To show that P does not cross €. By contradiction, assume that v;; is the first vertex of
P crosses C. From the shortestness, v; is not in V. Suppose that subpath vy - -vj_1, i+2 <
7 <, lies on C and that v; does not lie on C. By the definition of Ez, (v;_1,v;) € E; and
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hence v; € Vz. This is a contradiction to the shortestness. However, from that P does not
cross C, Vo NVgr # (. This is a contradiction to the 3-JCP. O

Theorem C(Third Jordan curve theorem) Let G = (V,E) be with an orientable polyhedron
¥ =%(G; F). Then, G has the 3-JCP if, and only if, G is planar.

Proof From Theorem B and Lemma 2, the sufficiency is obvious. Conversely, assume that
G is not planar. By Lemma 4.2.6 in [1], Im8; C Kerd, = C, the cycle space of G. By Theorem
4.2.5 in (1], Im& C Kerdy. Then, from Theorem B, there exists a circuit C' € C\ Im&; without
the 2-JCP. Moreover, we also have that V; # @ and Vg # 0. If otherwise V =0, let 3

D={fFec Fr,ec f}CF.
Because V; =0, any f € D contains only edges and chords of C, we have

C=> dof
feb
that contradicts to C' ¢ Imds. Therefore, from Lemma 2, C does not have the 3-JCP. The
necessity holds. 0

§2 Reducibilities

For S, as a surface(orientable, or nonorientable) of genus g, If a graph H is not embedded on a
surface S, but what obtained by deleting an edge from H is embeddable on S, then H is said
to be reducible for Sg. In a graph G, the subgraphs of G homeomorphic to H are called a type
of reducible configuration of G, or shortly a reduction. Robertson and Seymour in [2] has been
shown that graphs have their types of reductions for a surface of gexius given finite. However,
even for projective plane the simplest nonorientable surface, the types of reductions are more
than 100 [3,7].

For a surface Sy, g = 1, let H,_1 be the set of all reductions of surface Sy_1. For H ¢ Hy_1,
assume the embeddings of H on §; have ¢ faces. If a graph G has a decomposition of ¢
subgraphs H;, 1 < i < ¢, such that

¢ ¢
|JH: =6 | J#H: |\ Hy) = H; (1)
i=1 i#j

all H;, 1 < i< ¢, are planar and the common vertices of each H; with H in Lhe boundary of a
face, then G is said to be with the reducibility 1 for the surface S,.

Let £* = (G*; F*) be a polyhedron which is the dual of the embedding ¥ = (G; F) of G
on surface ;. For surface Sy_;, a reduction H C G is given. Denote H* = [e*|Ve € E(H)).
Naturally, G* — E(H") has at least ¢ = |F| connected components. If exact ¢ components and
each component planar with all boundary vertices are successively on the boundary of a face,
then T is said to be with the reducébility 2.

A graph G which has an embedding with reducibility 2 then G is said Lo be with reducibility

2 as well.
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Surface Embeddability of Graphs via Reductions 65

Given ¥ = (G; F) as a polyhedron with under graph G = (V, E) and face set F. Let H be

a reduction of surface Sp_3 and, I C G. Denote by C the set of edges on the boundary of H

in G and F¢, the set of all edges of G incident to but not in H. Let us extend the relation ~¢:
\/a,b e bo,

a~c b4 If € Fy, a,be df (2)

by transitive law as a equivalence. Naturally, |[Ec/ ~¢ | < ¢u. Denote by {E;|1 < i < ¢o} the
sel, of equivalenl classes on Fo. Notice that F; = @ can be missed without loss of generality.
Let Vi, 1 € ¢ € ¢, be the sel of vertices on a path between two edges of F; in G avoiding
boundary vertices. When E; = 0, V; = 0 is missed as well. By the connectedness of G , it is

seen that
b

Jvi=V - v (3)
=1
If for any 1 < @ < 7 < ¢¢, VinV; = @, and all [V;] planar with all vertices incident to F; on
the boundary of a face, then H, G as well, is said to be with reducibility 3.

83. Reducibility Theorems

Theorem 1 A graph G can be embedded on a surface Sg(g > 1) if, and only ¥, G is with the
reducibility 1.

Proof Necessity. Let pu(G) be an embedding of G on surface Sy(g > 1). If H € Hy_y,
then p(H) is an embedding on Sg(g > 1) as well. Assume {f;|1 < i < ¢} is the face set of u(H),
then G; = [8fi + E([fi]in)], 1 < ¢ < ¢, provide a decomposition satisfied by (1). Easy to show
that all G;, 1 <7 < ¢, are planar. And, all the common edges of G; and H are succesgively in
a face boundary. Thus, G is with reducibility 1.

Sufficiency. Because of G with reducibility 1, let I € Hg_1, assume the embedding p(H)
of I on surface Sy has ¢ faces. Let G have ¢ subgraphs H;, 1 < i < ¢, satisfied by (1), and all
H; pl‘ana.r with all common edges of H; and H in a face boundary. Denote by p;(H;) a planar
embedding of H; with one face whose boundary is in a face boundary of p(H), 1 < i < ¢. Put
each p;(H;) in the corresponding face of p(H), an embedding of G on surface Sy(g = 1) is then
obtained. P 0

Theorem 2 A graph G can be embedded on. a surface Sy(g > 1) of, and only if, G is with the
reducibility 2.

Proof Necessity. Let u(G) = ¥ = (G; F') be an embedding of G on surface Sg(g > 1) and
w(G) = pu(G*) = (@, F*)(= ¥*), its dual. Given H C @ as a reduction. From the duality
between the two polyhedra pu(H) and p*(H), the interior domain of a face in u(H) has at least
a vertex of G*, G* — E(H") has exactly ¢ = |F, ()| connected components. Because of each
component on a planar disc with all boundary vertices successively on the boundary of the disc,
H is with the reducibility 2. Hence, G has the reducibility 2.

Sufficiency. By employing the embedding p(H) of reduction H of G on surface Sg(g > 1)
with reducibility 2, put the planar embedding of the dual of each component of G* — E(H*) in
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the corresponding face of u(H) in agreement with common boundary, an embedding of u(G)
on surface S¢(g > 1) is soon done. O

Theorem 8 A 3-connected graph G can be embedded on a surface S¢(g > 1) #f, and only ¥,
G is with reducibility 3.

Proof Necessity. Assume u(G) = (G, F) is an embedding of G' on surface Sg(g > 1).
Given H C G as a reduction of surface S, 1. Because of H C G, the restriction p(H) of p(G)
on H is also an embedding of H on surface Sg(g > 1). From the 3-connectedness of G, edges
incident to a face of u(H) are as an equivalent class in Ec. Moreover, the subgraph determined
by a class is planar with boundary in coincidence, i.e., H has the reducibility 3. Hence, G has
the reducibility 3.

. Sufficiency. By employing the embedding p(H) of the reduction # in G on surface S,(g =
1) with the reducibility 3, put each planar embedding of [V;] in the interior domain of the
corresponding face of u(H) in agreement with the boundary condition, an embedding 1(G) of
G on Sy(g =2 1) is extended from pu(H). 0

84. Research Notes

A. On the basis of Theorems 1-3, the surface embeddability of a graph on a surface(orientabl
or nonorientable) of genus smaller can be easily found with better efficiency.

For an example, the sphere Sp has its reductions in two class described as K33 and Ks.
Based on these, the characterizations for the embeddability of a graph on the torus and the
projective plane has been established in [4]. Because of the number of distinct embeddings of
K and K3 3 on torus and projective plane much smaller as shown in the Appendix of [5], the
characterizations can be realized by computers with an algorithm much efficiency compared
with the existences, e.g., in [7].

B. The three polyhedral forms of Jordan closed planar curve axiom as shown in section 2
initiated from Chapter 4 of |6] are firstly used for surface embeddings of a graph in [4]. However,
characterizations in that paper are with a mistake of missing the boundary conditions as shown
in this paper.

C. The condition of 3-connectedness in Theorem 3 is not essential. It is only for the simplicity
in description.

D. In all of Theorem 1-3, the conditions on planarity can be replaced by the corresponding
Jordan curve property as shown in section 2 as in [4] with the attention of the boundary
conditions.
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Abstract: Let Gbe a k(k < 3)-ad§e connected simple graph with minimal
degree § > 3 and girth g, r = |#5=]. If the independent number a(G) of
G satisfies 6618 _8 6(g~2 )
- -6 6(g~2r-1
A< UHE -9 ik

then G is up-embeddable.
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1 Introduction

The mazimum genus, vp(G), of a connected graph G is the largest integer
k such that there exists a cellular embedding of @ in the orientable surface
with genus k. Recall that any cellular embedding of G has at least one
region. By the Euler polyhedral equation, the maximum genus ¢ (G) <
(2§ |, where B(G) = |E(G)| —|V(G)|+1 is the cycle rank or Betti number
of G. A graph G is up-embeddable if yu(G) = [Esgj exactly.

For a spanning tree T in graph G, ¢(G,T) denotes the number of com-
ponents of G \ E(T") with odd number of edges. £(G) = ming £(G,T) is

called the Betti deficiency number of G, where the minimum is taken over
all spanning trees T of G.

Theorem 1.1(Xuong [9], Liu [3]) Let G be a graph, then
(1) Tm(G) = 4(B(G) - £(Q));
*Supported by National Natural Science Foundation of China (No.10871021) and

Program for New Century Excellent Talents in University.
tE-mail: lsxx230@yahoo.com.cn

ARS COMBINATORIA 182(2011) nn 237.94%
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(2) G is up-embeddable if and only if ¢(G) < 1.

Let A be an edge subset of E(G). (G \ A) denotes the number of
components of G\ A, when b(G\ A) denotes the number of components of G\
A with odd Betti number. In 1981, Nebesky {7] obtained an combinatorial
expression of £(G) in terms of the edge set.

Theorem 1.2(Nebesky [7]) Let G be a graph, then

Q) = max {(G\A)+HGO\A) ~ |A] - 1}.

Let Fy,, -+, F;, be | distinct components of G\A. E(F;,,:--,F;) de-
notes the set of edges whose end vertices are in different components F;_
and Fi_ (1 £ m < n £ ). For an induced subgraph F of G, E(F,G) =
E(F,G\ E(F)). An independent set is the set of vertices in a graph, no
two of which are adjacent. The cardinality of a maximum independent set
is called the independent number of a graph G and is denoted by a(G). For
more graphical notations without explanation, see [1].

Theorem 1.3( Huang and Liu [4]) Let G be a graph. If G is not
up-embeddable, i.e., £(G) > 2, then there exists an edge subset A C E(G)
satisfying the following properties:

(1) &(G\A) = H(G\A) 2 2;

(2) for any component F' of G\ A, F is an induced subgraph of G;

(3) for any | > 2 distinct components F'iu ey Fﬁ of G\A, IE(-Fiu

R <2A-3; |

(4) €(G) = 2:(G\A) — |4] - 1.

The study of the maximum genus was inaugurated by Nordhaus, Stew-
art and White[8]. From then on, various classes of graphs have been
proved up-embeddable. A formerly known result[9] states that every 4-
edge connected graph is up-embeddable. But, there exists 3-edge connected
graphs(see (2]) which are not up-embedabble. Based on this, what kind of
reétrictions, under which a graph is up-embeddable, are studied extensively.
Huang and Liu(5] proved that the maximum genus of a connected 3-regular
graph G is equal to the maximum nonseparating independent number of
G. In this paper, we study the up-embeddability of simple graphs via the
independent number and obtain the following results.

Theorem 1.4 Latheak(k(ii)edqemnected graph with
minimal degree § > 3 and girth g, r = | &3=]. If the independent number
aG) of G satisfies

6(6-1)8l -6 6(9g—2r—1)
A< U—mE= 1=k

then G is up-embeddable.
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2 Characterizations of induced subgraphs

The distance between two vertices u and v in a graph G, denoted by
do(u, v), is the length of a shortest (u,v)-path in G. The distance between
the edge ab and vertex v in a graph G is dg(ab, v) = min {dg(a, v), da(b,v)}.
Clearly, dg(uv, u) = dg(uv,v) = dg(u,u) = 0. The i(i > 0)neighbor set of
a vertex or an edge z in a graph G is Ni(z) = {v | dg(z,v) =4,v € V(G)}.
For an induced subgraph F of a graph G, the vertex v € V(F') is called a
t-touching vertex or simply touching vertez of F, if v is the end vertex of
t(t 2 1) edges in E(F,G). In paper [6], we obtain the following Proposition
1 and Proposition 2.

Proposition 1 Let G be a simple graph with minimal degree 2> 3, girth
g, r = |%}]. H is a connected induced subgraph of G, B(H) > 1. If
{u,v} C V(H) contains all the touching vertices of H, then,

(1) when g = 2r + 2, there ezists an edge ab € E(H) such that
min{dy(ab, u), duy(ab,v)} = r;

(2) when g = 2r + 1, there exists a vertex a € V(H) such that
min{dg(a,u), dy(a,v)} > r.

Proposition 2 Let G be a simple graph with minimal degree > 3, girth
g, r= ['-;—‘j. H is a connected induced subgraph of G, S(H) > 1. If H
has exactly three 1-touching vertices u,v,w, then,

(1) when g = 2r + 2, there exists an edge ab € E(H) such that
min{d;;(ab, u), dg(ab, v)} 2r-1, w{dﬂ(abv u)» dH(aba ”)} 2T dﬂ(abv ID)
2T .

(2) when ¢ = 2r + 1, there exists a vertez a € V(H) such that
min{dy(a, u),dn(e,v)} 2 r — 1, max{du(a, u),du(a,v)} 2 r, du(a,w) 2
T.

Lemma 2.1 Let G be a simple graph with minimal degree > 3, girth
g4, r= ['i—lj. H is a connected induced subgraph of G, S(H) > 1. If
|E(H,G)| < 3, then there exists an independent set A of H, which has no
touching vertez of H, such that

(6 -1l -1
-2

Proof Firstly, when H has exactly three 1-touching vertices {u, v, w},
by Proposition 2, there exists an edge or a vertex z in H such that min{dy(z,
u),dy(z,v)} 2 r — 1 and min{max{dy(z,u), du(z,v)}, du(z,w)} 2 r.
Suppose dy(z,u) = min{dy(z,u), dg(z,v)} > r — 1 and min{dy(z,v),
dy(z,w)} 2r.

Case 1 When g =2r+1 > 5, then z is a vertex in H. As Ny(z)(0 <
i < r — 2) has no touching vertices of H, thus

Ni(z)26-(6-1)*1, 1<i<r-1

|A] 2 —9+2r+1.

= 11212 -



