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On the average crosscap number II: Bounds
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Abstract The bounds are obtained for the average crosscap number. Let G be a graph which is

not a tree. It is shown that the average crosscap number of G is not less than %;—fg;—%ﬁ(c) and not

larger than 3(G). Furthermore, we also describe the structure of the graphs which attain the bounds
of the average crosscap number.

Keywords: average genus, average crosscap number, bounds.

MSC(2000): 05C10

A graph G in this paper is permitted to have both loops and multiple edges. A surface is
equivalent to a compact 2-dimensional manifold without boundary. In topology, surfaces are
classified into O,,, the orientable surface with m(m > 0) handles and N, the nonorientable
surface with n(n > 0) crosscaps.

A representation u(G) of a graph on a surface S with vertices as points and edges as curves
which pairwise disjoint except possibility for endpoints is called an embedding of the graph in
the surface S. The connected components of S — u(G) are 2-cells and are called the faces of
the embedding. In this paper, a surface embedding is also called a cellular embedding.

By a polygon with 7 sides, we shall mean a 2-cell which has its circumference divided into r
arcs by r vertices. In fact, a surface can be seen as what is obtained by identifying each pair
of edges on a polygon of even edges pairwise. According to refs. [1, 2], it is shown that the
“following three operations do not change the class of a surface.

Operation 1: Aaa™ < A,

Operation 2: AabBab <= AcBe,

Operation 3: AB <= (Aa)(a™ B).

Notice that A and B are all linear orders of letters with empty as a degenerate case in these
operations. From the three operations, the following relations can be derived.

Relation 1: AzByCz~ Dy~ E ~ ADCBEzyx~y~,

Relation 2: AzBzC ~ AB~Czz,

Relation 3: Azzyzy~z~ ~ Azzyyzz.
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DOI: 10.1007/s11425-007-2082-0
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Relation 1 is also called the handle normalization, and Relation 2 and Relation 3 are also
called the crosscap normalization. In the three relations, A, B and C are permitted to be empty.
B~ is the inverse of B. By Relations 1, 2 and 3, we can always obtain the normal form of a

surface as one of
Op = aa™,

m
Om = Haib;a;’bi—(m B 0),
i=1

n
N, = Ha,-a,-(n > 0).
i=1
A connected graph without circuit is called a tree. A spanning tree of a graph is such a
subgraph that is a tree with the same order as the graph. For a spanning tree of a graph G,
the numbers of edges not on the tree are called the Betti number of the graph and denoted by
B(G):
A rotation at a vertex v of a graph G is a cyclic order of all semiedges incident with v. A
pure rotation system P of the graph is the collection of rotations, one for each vertex of G. It
is known that the total number of the pure rotation system P of G is given by the formula

II @ -1

veV(G)

A general rotation system is a pair (P, \), where P is a pure rotation system and ) is a mapping
E(G) — {0,1}. If A(e) = 1, we wmean that the edge e is twisted, otherwise e is untwisted. It
is well known that every orientable embedding of a graph G can be described by a general
rotation system (P, A\) where A(e) = 0 for each edge e of G. By allowing A to take the non-zero
values we can describe the nonorientable embeddings of G. The details can be found in refs.
(3, 4]. Let T be a spanning tree of G, a T-rotation system (P, A) of G be a general rotation
system such that A(e) =0, e € E(T).

The following theorem!®4 is well known
Theorem 1.1. Let T be a spanning tree of G and (P, )) is a general rotation system. Then
there ezists a general T -rotation system (P, \') such that (P’,\') yields the same embedding of
G as (P,A).

Now, we fix a spanning tree T of a graph G. Let ®Z be the set of all T-rotation systems of
G. It is known that

8% =27 ] (& -1
veV(G)
Suppose that in these |®%| embeddings of G, there are a;, for i = 0,1,..., embeddings on an
orientable surface O; and b;, for j = 1,2, ..., embeddings on a nonorientable surface N;. We
call the polynomial,
[ ¢} (> )
IE(zy) =Y ar +Y by,
i=0 j=1

the T-distribution polynomial of G.
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By the total genus polynomial of G, we shall mean the polynomial

ﬁ - m .
Ig(z,y) =) _giz* + 3 furf,
=0 i=1
Note that g; is the number of embeddings on the orientable surface O; and f; is the number
of embeddings on the nonorientable surface N;.

We call the first part of Ig(z,y) the genus polynomial of G denoted by

= =]

g9c(@) = ) giz"
=0

Similarly,

oo

fey) =3 fi'
i=1

is the crosscap number polynomial of G. Of course Ig(z,y) = ga(z) + fo(y).
The average genus of G is defined to be the value

ge(1)
G)==—.

In the early years, the topological graph theorists focused their attention on the minimum
and maximum genera of all the embeddings of G. Later, a lot of attention was given to the
average genus of all the embeddings of G, for the details we can refer to [3, 5-13]. In this paper
we study the average crosscap number which could be thought as a generalized average genus in
a nonorientable surface. Now we have the following definition of the average crosscap number.

The average crosscap nurmber of G is defined to be the value

= fe(V)
vg(G) = ===,
Ya S( ) fG (1)

By the definition, we know the average crosscap number of a graph G is the ratio of the sum
of all crosscaps of the nonorientable embeddings over the number of nonorientable embeddings
of G. The investigation of the average genus and the average crosscap number will help us to
understand the embeddings of the graphs.

Now we give an example to explain the above definition.

Example 1. K33 and Q3 are the two graphs shown in Fig. 1. The total genus polynomials
of the two graphs are: Ik, .(Z,y) = 40 + 24z + 12y + 108y2 + 432y + 408y4, Ig,(z,y) =
2 + 54z + 20022 + 24y + 192y2 + 128832 + 3264y* + 3168y°.

It is a routine task to compute the average genus and the average crosscap number of the
two graphs Ka,a and Qa.

s
8’
89

99 i
7nvg(Q3) = lfﬁ’ '7,,,8(Q3) = 4R'

3 ~
Yavg(K3,3) = 15, Favg(Ka3) =2
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P

Ka Q

Fig. 1. The graphs K3,3 and Q3

The following theorem can be found in [3].

Theorem 1.2. The total genus polynomial I(z,y) is equal to the T -distribution polynomial
IZ(z,y), and the total number of the embeddings of the graph is
28(G) H (dy — 1)L
vEV(G)

The above two theorems imply that the total genus polynomial of a graph independent of
the choice of it is spanning tree.

The following method(® can be used for finding an embedding on a surface (orientable and
nonorientable). Firstly, we choose any spanning tree T of G and a general rotation system
(P, X) such that A(e) = 0,V e € E(T'). Secondly, we distinguish all co-tree edges of T' by letters
and replace each co-tree edge by two articulate edges with the same letter. Thirdly, we label
the same letter with the same or distinct indices according as A(e) = 1 or A(e) = 0. Finally,
according to the rotation, all lettered articulate edges of G form a polygon A with 5(G) pairs
of edges. Then, we apply Relations 1, 2, and 3 and Operations 1, 2, and 3 to normalize the
polygon A and get the handle or the crosscap number of the embedding.

From the above procedure, G is transformed into Gr without changing the rotation at each
vertex except for the new vertices that are all articulate. Since Gr i8 a tree with a choice of
the indices of pairs in the same letter, we called it the joint tree of G. Nuw we give an example
to get the embedding of a graph by using the above procedure.

Example 2. Given the graph G=(V, E), V = {u,v,w,2,y}, E = {a,b,¢,d,¢, f, g, h}, h,e, f,
and g are edges on T and a,b, ¢, and d are the co-tree edges. The rotation system P at each
vertex is u : (ehgf), v : (had), w: (bea), = : (bfc), y : (ged).

Applying the above method, we get its joint tree Gt (see Fig. 2). We travel along the
rotation (see the arrows) and get the polygon

aba"b"cd"c™d ~ Os.
So the rotation system is an embedding on O».

Fig. 2. The graph G and its joint tree G

- 8348 -



296 Yi-chao CHEN & Yan-pei LIU

Since the computing of the average crosscap number for a graph is NP-complete, it is not a
easy task to compute the average crosscap number of a graph. Thus we may want to obtain
the bounds for the average crosscap number of a graph. In the later sections, we will prove the
following three theorems.

Theorem 1.3. Let G be a connected graph which is not a tree, then
28(G)-1 _
2a_(G)T1ﬂ(G) < %avg(G) < B(G).
Furthermore the bounds are best possible.
2B(G)—1

We also describe the structures of a graph with the average crosscap numbers being Szzy—7
B(G) and B(G).
Theorem 1.4. Let G be a connected graph, then Favg(G) = %{;{:—;B(G) if and only if G is
a cactus.
Theorem 1.5. Let G be a connected graph, then Favg(G) = B(G) if and only if G is homeo-
morphic to a cycle.

In other words, the cacti are the only graphs attaining the lower bound for the average
crosscap number of Theorem 1.3. The loop B, is the only graph attaining the upper bound for
the average crosscap number of Theorem 1.5.

2 Some basic results
For convenience, in a cyclic permutation P on €, i.e. every element of P belongs to 2, if the
two elements z,y € Q are in the form of P = AzByCz~ Dy~ E, they are said to be interlaced;
otherwise, parallel.

We have the following
Lemma 2.12l.  If any two elements are parallel on P, then there is an element = € Q such
that (z,z~) C P, i.e. {x,z™) i3 a segment of P itself.
Proof. Suppose to the contrary, if no such an element exists on §2, then for any z €  there is
a nonempty linear order By on {2 such that

P = Az, Bz Ch,
where A; and C; are some linear orders on ). Because B; is nonempty, for any z; € Bi, on
the basis of orientability and z2 and z; being parallel, the only possibility is z; € B;. From
the known condition, there is also a nonempty linear order By on 2 such that

B, = AyxyBaz; Co,
where A; and C; are the segments on B, i.e. some linear orders on 2. Such a procedure can
go on to the infinity. This is a contradiction to the finiteness of the elements of P. Hence, the
lemma is true.
Lemma 2.2. Let P be a polygon on Q, if P ~ O (k 2 1), then the two existing elements
z,y € ( are interlaced.
Proof. By contradication, any elements of P on {2 are parallel. By Lemma 2.1, we know that

there exists an element z € € such that (z,z~) C P, i.e. P = Azz~ B, where A and B are the
linear orders on Q2. By Operation 1,

- 8349 -
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P = Azz"B ~ AB.

Since any elements of AB are parallel too, by Lemma 2.1, there exists an element y € Q such
that< y,y~ >C AB, i.e. AB = Cyy D, where C and D are the linear orders on 2. By
applying Operation 1 again, we have

AB =Cyy D ~ CD.
Such a procedure can go on to the infinity. Since the elements of P are finite, we at last have
P ~ Og. It contradicts to P ~ Oy (k > 1). Thus, there exist two elements z,y € Q which are
interlaced.
Lemma 2.3. Let a polygon P = AB ~ Oy, then we have the polygon P, = aAaB ~ N,
where 2 > h > 1.

Proof. We may suppose the polygon
P = z123 - - Toan—1%2n,

ie. Q= {z;li =1,2,...,2n}. We prove the lemma by induction on n.
If n =1, then P = 2,23 = z1z] and P; can be described as the following two forms

P, = aaz1z; or P, =azaz;.

If P, is the former, by Operation 1, we have P, ~ N;. If P, is the latter, by Relation 2, we
have P; ~ N3. So the lemma is immediately verified for n = 1.

Now we suppose the lemma is true for n < m (m > 1). If we prove the lemma forn = m+1,
then we complete the proof. Since P ~ Op, by Lemma 2.2 we know that any two elements
are parallel on P. By Lemma 2.1, there is an element = € § such that (z,z7) C P. So we
can write P = zz~ A, A9, where A,, 42 C Q — {z}. If P, = zz~ BiaBaaBs, by Operation 1
we know that P, ~ BiaBaBj3, where B; C A; U Ag,i = 1,2,3. By induction we know that
P, ~ ByaByaB3 ~ Ny, where 2 > h > 1. Otherwise P = zaz~C1aC;. Since C1Ca ~ Oy,
by the above discussion there exists an element y € @ — {z} such that < y,y~ >C C1C>. If
P, = zaz~ Dyyy~ D2aDs3, where D; C Cy UC2 — {y},i = 1,2, 3, by Operation 1 we know that
P, ~ zaz~ D;DsaD;. By induction, we know that the theorem is true; otherwise we have
P, = zaz~ Eryay~ E,, where E; C C; UC; — {y},i = 1,2. Since the polygon is E; E2 ~ Oy,
such a procedure can go on to the infinity. Because the elements of P are finite, we at last have
that the theorem is true, or the polygon P, can be described as P, = z;, -+~ %0z, **-Z; a.
By Relation 2, we have P, ~ Na.

Thus, the proof is completed.

Lemma 2.4. Let the polygon P = AB ~ Oy, then we have the polygon P, = aAaB ~ Nj
where 2k +2 2 h > 2k + 1.

Proof. We may assume that the polygon
P =z129-** Ton_1T2n,

ie. Q= {zli =1,2,...,2n}. Then,we prove the lemma by induction on n.

If n =1, then P = z,25 = 7127, by Lemma 2.3, we know that the theorem is true. Now we
suppose the lemma is true for n < m (m > 1). If we prove the lemma for n = m + 1, then we
complete the proof.
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Case 1. P = AB ~ Op. In this case, by Lemma 2.3, it is true.
Case 2. P= AB ~ Ox(k > 1). By Lemma 2.2, we can write P as the following form.

P = A1zByyCiz~ Dy~ Ea,

where A;, B1,C1, D, and E; are the linear orders on ().
Then, P, can be written as the form

A'zByC'z~D'y™E?,

where A'UB'UC'UD'UE! = A UB,UC,UD, UE, U{a}, |A'UB'UC'UD'UE!| =
|JAyUByUCyUDyUEy|+2and z,z7,y,y~ €.
By Relation 1, we have
P~AD\CiB1Evzyz™y ™,

P~ A'D'C'B*E'zyz"y".
Let Q! = A'DC'BLE! and Q, = A, D,C1B,E;. By the relation between Q' and Q,, If we

denote Q! = gA’aB’, then Q; = A’B’. Since P = AB ~ O (k > 1) and by Relations 1, 2 and
3, we have Q1 ~ Og_,. Because |Q;| < m, by induction

Ql ~ Nh

where 2(k—1)+22>12>2(k—1)+1.
By Relation 3, Py ~ Nj;2. Because

2%+2=2(k—-1)+2+2>1+2>2(k-1)+2+1=2k+1,

it is true for n = m + 1.
Thus, the proof is completed.
Lemma 2.5. Let P= ABC ~ Ni, P, = AeBe~C ~ N; and P; = AeBeC ~ Ny,. Then, we
have l2 k+1orm2k+1.
Proof. Suppose
P =222+ Tan-1%2n,
Pi =2, Zi€Tis1*  Tm€ Tm+1° " T2n,
P =12 Ti€Tis1 " TmeTm+1 " * T2m;
where Q = {2122 -Top_1Z2n} and n > 1.
We prove the theorem by induction on n.
If n =1, then P = 25 = zy7;. We have the following two cases.
Case 1. P, = ziexie, P, = z1ez1e~. By Relation 2, P» = z1ez1e~ ~ T1Z1ee = Na.
Case 2. P; =z1Z1€e, Po = z1z1€e~. In this case, P, = z1z,ee = Ns.
So the theorem is verified for n = 1.
Now we assume that the theorem is true for n < r (r 2 1). If we prove that it is true for
n = r + 1, we shall complete the proof. Since P ~ Np, there exists a letter a € {z1,...,Zan}
with the same indices. By symmetry, there are the following two different forms of P, P, and P;.
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Case 1. P = A;8A26AsBC,P, = AjaAzaAzeBe C and P, = AjaAzaAzeBeC where
A,, A2, A3, B and C are the linear orders (or the polygons) on (2.
By Relation 2
P = AjaA2aA3BC ~ A, A; A3BCaa,
= AjaAzaAzeBe C ~ A1A;AaeBe'Caa,
Pz = AlaAzaAseBeC ~ AlAQ_ AaeBeCaa,
where A3 is a linear order on 2.
If AyA7 A3BC ~ Ni-1 (k-1 2 1), we have

A1AZ AzeBe™C ~ N, (t-1)>1,
A1A; AzeBeC ~ Ny (m — 1) > 1.

By induction, we have (I —1) 2 (k—1)+1lor(m—1) > (k—1)+1,ie. Il 2 k+1lorm 2 k+1
So it is true in this case.
Otherwise, A;A; A3BC ~ O,. Since
P = ABC ~ N,
by Relation 3, we have 2r + 1 = k. By Lemma 2.3,
A1A7 AzeBeC ~ N1, m—122r+1.

SoPo~Npandm>22r+14+1=k+1.

Case2. P= AxaAzBlaBzC P1 AlaAgeBlaBge‘C and Pz = AmA:eB;aBgeC‘ where
A,, Az, By, B; and C are the linear orders (or the polygons) on 2. In this case, it is similar to
Case 1 and the proof is omitted.

Thus, the proof is completed.

3 Main results
Let G’ be a subgraph of a graph G and P be a pure rotation system on G. The induced rotation
system P’ on G’ is obtained by deleting all edges of G — G’ from the rotation system P. Let T’
and I are the sets of the pure rotation system on G and G’ respectively. We denote I'p/ to be
the set of all rotation systems on G that induce the rotation system P’ on G'. The following
Lemma is obvious/®l.
Lemma 3.1. Let G’ be a subgraph of a graph G. Then the set T of all pure rotation systems on
G i3 a disjoint union of the sets ['p:, taken over all pure rotation systems P' on G'. Moreover,
L) = |TY} - |Tp:|, for any pure rotation system P’ on the graph G'.

Let RT be all T-rotation systems of G which are embeddable on the nonorientable surfaces.
By the definition of the average crosscap number and Theorem 1.2, we have

T =
and

Rl = 2@ -1) J] (@-1t

veV(G)
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Note that F(R) represents the crosscap number of R.

Let e = uv which is not a cut-edge of G and e ¢ E(T'), then we can choose the spanning tree
T of G as the spanning tree of G — e. For any T-rotation system (Pg, ) of RZ, let Pg_. be the
induced rotation system of Pg. We define the T-rotation system (Pg—_., \') of G — e as follows:

(1) Pg-. is the induced rotation system of Fg,

(2) X(f) =), f € E(G —e) — E(T).

Let RZ_, be all the set of the T-rotation systems (Pg—.,\') of G — e which are embeddable
on the nonorientable surfaces and S%_, be all the pure T-rotation systems (Pg_., ') of G —e
which are embeddable on the orientable surfaces, i.e. for any (Pg_.,\) € S%_,, N(f) = 0,
Y f € E(G—e). Let ['p,_, be the set of all rotation systems on G that induce the rotation system
Pg_. on G —e. It is obvious that |T'p,_,| = (dg(u) — 1)(dg(v) — 1) or (dg(u) — 1)(dg(u) — 2)
according to u # v or u = v. Since A(e) has two kinds of choice 0 or 1, we have the following.
Lemma 3.2.

I5] = 2T p RG] + I 195 -

Proof of Theorem 1.1. Let G = (V,E). By the definition of the average crosscap number,
the inequality Yavg(G) < B(G) is obvious. Now we prove the left part of the inequality. The
theorem is proved by induction on |3(G)|. If 8(G) < 2, G is homeomorphic to one of By, Ba, D3
and B; @ B; (see Fig. 3).
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Fig. 3. Graphs whose betti number is less than 3.

The crosscap number polynomials of the graphs D3, By and B; @, B, are

fe.(w)=v fBa(y) = 10y + 8%,
fos(y) =6y +6y%,  frio.B:(y) =8y + 4y’

It is a routine task to compute the average crosscap number of these graphs and we get

~ - 13 4
'YAvg(Bl) =1, 'Yan(B2) = ) '§,
~ 3 4 s 4

'7svg(D3) = E > '§, 7“5(31 De Bl) = 5

So, it is a easy task to check that it is true for A(G) < 2.

We may suppose the theorem is true for the graphs with 8(G) = k > 3. Since the average
crosscap number is a homeomorphic invariance of a graph, we can suppose §(G) > 3 and hence
there exists an edge e = uv which is not a cut-edge of G. i.e. G — e is connected. Then we can
choose a spanning tree T of G such that e ¢ E(T). We delete an edge ¢ of G, and get the graph
G —e. It is obvious that T is also a spanning tree of G — e. Let R% be all T-rotation systems
(Pg, ) of G which are embeddable on the nonorientable surfaces. Let R _, be all the set of
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